当前位置:首页 > 嵌入式 > 嵌入式硬件

来源:电子技术应用; 作者:康利军 杨国盛
摘要:提出了改进的视频图像小波压缩算法,设计了基于高速数字处理芯片DSP-C6201的硬件平台,并在此平台上对改进的小波压缩算法进行编程,实现了智能大厦监控系统不等清晰度视频图像压缩。系统的成功应用证明该系统硬件的高可靠性和软件压缩算法的有效性。
关键词:智能大厦 监控系统 视频图像 小波压缩 DSP
智能大厦是现代建筑与高新信息技术相结合的产物。1984年,美国康奈涅格州哈特福德市建成了世界首座智能大厦,次年日本东京的一座智能大厦相继建成,从而智能大厦引起了世界各国的关注。当前,我国兴建智能大量的热潮方兴未艾,其中图像信号处理器的设计至关重要。传统的以模拟电子技术为核心的监控系统,由于摄像头传出的图像信息量大,直接对图像进行记录需要过多的录像带,很难实现计算机联网传输、信息共享的需求。采用相关编码技术对图像进行压缩,在系统中实现实时存储和传输是现代智能大厦的迫切要求。但是,图像压缩所采用的方法一般比较复杂,运算工作量大,单凭软件实现图像压缩难以满足实时的要求,一般要借助硬件来提高运算速度以满足图像实时压缩。正是在这种情况下,本文提出了改进的视频图像小波压缩算法,设计了基于高速数字处理芯片DSP-C6201的硬件平台,并在此平台上改进的小波压缩算法进行编程,实现了智能大厦监控系统不等清晰度视频图像压缩。


1 图像压缩技术[6]
近年来涌现的诸多图像压缩算法中,最具有途的是基于块分类的分形编码和基于小波变换的零树编码。分形压缩的理论依据是Barnsley等人提出的迭代函数系统(IFS)理论和拼贴定理。它实质上是把数量最少且匹配最好的多个压缩仿射变换找出来,取出其参数,如果其参数复杂性低于原图像,便实现了压缩。另一个引人注目的压缩算法是基于小波变换的零树编码。图像经过小波变换后生成的系数数据总量与原图像的数据量相等,即小波变换本身并不是有压缩功能,之所以将它用于图像压缩,是因为生成的小波系数具有能量集中性、重要系数的群集性、各分量系数之间的相似性和分量系数幅度的衰减性等适合分类压缩的特性。基于上波变换的零树编码方案充分有效地利用了小波的频率分布特点,不会像分形那样产生明显的方块效应,而且易于软硬件实现,适合多类图像的压缩。这一类算法的典型代表是Shapiro提出的嵌入式零树编码(EZW)。但是,Shapiro方案一个明显的缺点是将不同级别的系数在判断重要系数时给予同等的考虑。本文在Shapiro方案的基础上提出了基于PSWTC(priority set wavelet tree coding)的改进的小波压缩方案克服了这一缺点,解决了不同大小不同级别的小波系数重要性判断的方法问题。PSWTC结果的PS系数分布有明显的规律性,级别高的个数少,级别低的个数多,呈金字塔分布,说明PSWTC很好地实现了零树编码方案的基本原则。与EZW相比较,PSWTC的计算复杂性要小,占用的存储空间小,耗费的时间短,容易实现快速压缩,克服了传统小波图像编码中存在的费时费力的缺点[4][5]。PSWTC算法的具体步骤是:
(1)低频系数暂不理会,置所有最高级节点为待分系数,构成待分系数集。
(2)设置门限,设初始阈值为T=Tmax=2×exp{「log2Max「|X|」」},“「」”表示取整操作符,X是除低频系数外的全部小波系数。
(3)根据门根比较判断待分系数的重要性输出Sn,n=1。重要则输出1,不重要则输出0。系数重要性由其小波对集合的重要性决定。


(4)按之字形顺序把所有重要系数加入优先集(priority,简称PS)Xi,i=1,把它们从待移系数的中删除,并按之字形顺序填入它们的子女。
(5)阈值减办,T=T/2,跳到第3步,逐次形成优先集Xi,i=2、3…,直到阈值达到一个预定的最小门限值或待分系数没有节点存在为止。
在此基础上给出了按小波变换→系数分类→熵编码顺序的图像压缩方法。
2 硬件设计
模拟视频信号经高速A/D采样后转换成数字视频信号。数字视频信号由奇数场信号和偶数场信号两路信号组成,奇数场信号和偶数场信号按照上述改进的小波压缩方案进行图像压缩。采用TI公司的含多处理单元的C6201定点处理器,该处理器可采用50MHz或100MHz的工作频率,经内部倍频后升至200MHz,每秒可完成1.6G次操作。其内部含有具备超长指令字处理能力的CPU和8个功能单元,故而它可在个时钟周期内执行8条指令,芯片运算能力显著提高,再加之其良好的外部RAM接口和16bit的主机接口以及四通道的DMA功能,就使

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭