当前位置:首页 > 嵌入式 > 嵌入式硬件

  今年年初TI推出的两款模数转换器(ADC)ADS8329和ADS8330向世人展现了一个低功耗、高速和高性能的独特组合。该组合使其成为诸多应用的理想选择,例如:通信、医疗仪器、自动测试设备、数据采集系统或工业过程控制等。本文中,TI的ADC马达控制设计经理FrankOhnhaeuser就上述两款转换器的有关性能进行了概述,并对有助于实现这些性能的关键要素作了阐述。

  ADS8329和ADS8330属于同一个器件系列,他们是500kSPSADS8327和ADS8328的升级延伸。所有产品均为引脚兼容,并提供了一个基于逐次逼近架构(SAR)的ADC。ADS8327和ADS8329均为单通道器件,而ADS8328和ADS8330为双通道器件。一个内部时钟用于对转换计时,但是也可以对该转换器进行编程,以利用串行接口的外部时钟。编程和数据传送均通过一个高速串行接口来完成。

图1ADS8329/30结构图

  如果转换正在使用内部时钟,那么外部时钟就应该被关闭。非同步时钟信号通常会引起基板失真,从而得到两种选项。如果ADC以内部时钟运行,那么就应该在转换之后读取数据,并且在数据传送完成以前,不应触发新的转换。如果该部件通过外部时钟运行,那么就可以在下一转换期间读取数据。外部时钟以两倍的转换速度运行,以确保数据传送在运行转换复写(overwrite)输出数据以前完成。

  通过串行接口编程可实现多种额外的功能。一种是双通道产品的通道选择。这样,就可拥有一个自动触发器,其在前一个转换完成以后自动将转换起始信号(CONVST)初始化为4个转换时钟周期。利用链模式,数个同步采样ADC的数据可以通过一个串行接口读取。您可以在产品说明书中查看到其他的特性。

  该转换器系列专门优化用以实现低功耗,以便具有多种功耗降低特性。在慢内部信号保持上电而快速(300ns)恢复模块被关闭的情况下,得以实施一个NAP模式。我们可以将2.7V电源电压的电流消耗从5mA降低至0.25mA,将5V电源电压的电流消耗从7mA降低至0.3mA。可以通过串行接口或触发CONVST信号来唤醒ADC。在正常运行状态下,CONVST信号将会立即冻结输入电压,并开始转换。在NAP模式下,ADC首先醒来,同时数据在6个时钟周期以后自动被冻结。

  为了最小化开销,可将转换器置于一种AUTONAP模式。在该模式下,一旦转换完成,转换器就会自动地降低其电流消耗。因此,CONVST信号可以被用于唤醒ADC,并开始转换。在转换完成以后,ADC将再次降低其功耗。

  如果ADC长期保持非使用状态,那么深度睡眠(PD)功能应该被用于充分降低ADC功耗。剩余的漏电流通常为4nA。图2和图3显示了NAP和PD运行中电流消耗与采样速率的关系。由于存在更长的唤醒时间,因此,深度睡眠运行模式应该只在低采样速率条件下才使用。对于100kSPS以上的采样速率而言,NAP功能更为有效。

图2在NAP模式下,电流消耗与采样速率的关系

图3在PD模式下,电流消耗与采样速率的关系

  就节能而言,我们建议关闭ADC的外部时钟。否则,电流消耗可能会保持在1mA以上。ADS8329/30不同于一些有竞争力的产品,因为其可以被用于较宽的电源电压范围。在2.7V到5V的范围内可以选择模拟电源电压,而数字接口则可以始终在低至1.65V的电压下工作。

  ADS8329/30的设计不仅是为了实现低功耗,还为了实现高性能。一个内部动态误差允许对较小调整进行校正,以及转换期间的散热效果,同时在转换结束时对其进行校正。该功能以及封装内的微调功能使差分线性度保持在±0.5LSB的范围内。紧密的差分线性度还有助于达到一个较好的积分线性。图4和图5显示了这种典型的线性度。

图4LSB中差分非线性与1MSPS输出代码的关系

图5LSB中积分非线性与1MSPS输出代码的关系

  当功耗受到限制时,噪声优化就变得困难了。在ADS8329/30上,通过将参考缓冲器移出ADC,可以实现低噪声。这就要求一个外部电容器能够对由ADC电容器阵列引起的参考突波进行补偿。如果这种电容器高至216+1,那么在一个转换期间该电容器的压降会保持在LSB的一半以下。对于ADS8329而言,推荐使用22uF陶瓷电容器,以其0805尺寸和X5R质量,现在开始供货。参考电压应该具有一个良好的负载抑制,以便转换器输入的平均电流不会引起参考输入压降(该压降超过了LSB的一半)

图6DC输入电压下4096代码的代码分布

  除该参考电压以外,内部电容器也是一个主要的噪声源。动态误差校正允许较小的内部调整误差。这样,就可以减少比较器带宽。这两个因素均限制了噪声,因此就实现了一个DC输入电压的紧密噪声分布(如图6所示)。共计4096个采样中的4087个采样仅分布在2个代码上面。

  市场上有少数产品表现出更为紧密的噪声分布,但是这些产品拥有全对称、全差动输入信号,其要求具有一个复杂的输入结构。ADS8329/30提供了简单的单端输入范围,因此能够使用成本更低的CMOS放大器,例如:OPA365。

  良好的线性和噪声性能还体现在ADS8329/30的AC性能上(能实现高达93dB的SNR)。这种差分非线性将影响SNR,同时积分非线性会引起谐波。图7显示了一个10kHz输入频率和4096采样的FFT,同时还证实具有低谐波失真。更高频率时,总谐波失真(THD)取决于非线性输入开关和内部电容器。

  这些非线性组件将会使THD迅速降低。在图8中,这种变化得到了监控。但是,相比一些颇具竞争力的产品,该下降趋势不那么剧烈。在其内部,使用了一种非常特殊的开关结构,以便使这些非线性开关位于一个低阻抗工作点上。这就大大降低了开关的影响。

图7显示一个10kHz输入信号的4096采样FFT

  单通道ADS8329和双通道ADS8330既不是市场上最快的SAR转换器也没有提供最低的噪声性能,但是它们是一种非常独特的最低功耗、高速、低噪声和良好线性度的组合。这就使它们特别适合于那些重视低功耗和高性能的各种应用,例如:手持终端设备或多通道同步采样应用等。

图8总谐波失真与输入频率的关系



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭