当前位置:首页 > 嵌入式 > 嵌入式硬件

引言  射频识别(rfid)技术近年来在国内外得到了迅速发展。对于需要电池供电的便携式系统,功耗也越来越受到人们的重视。本文将具体阐述基于msp430f2012和cc1100低功耗设计理念的双向主动式标签的软硬件实现方法。  低功耗设计  低功耗概述  功耗基本定义为能量消耗的速率,可分为瞬态功耗和平均功耗两类。两者意义不同,有不同的应用背景和优化策略,通常被笼统地概括为低功耗设计。实际研究中可根据不同情况区分为:  (1)瞬态功耗优化:目标是降低峰值功耗,解决电路可靠性问题。  (2)平均功耗优化:目标是降低给定时间内的能量消耗,主要针对电池供电的便携电子设备,以延长电池寿命或减轻设备重量。  功耗的物理来源  芯片电路的功耗主要来自两方面:动态功耗和静态功耗。动态功耗主要是电容的充放电和短路电流。静态功耗主要是漏电流,包括pn结反向电流和亚阈值电流,以及穿透电流。如果工作时序及软件算法设计有缺陷,会降低系统工作效率、延长工作时间,也会直接增加系统能量的消耗。  低功耗设计策略  算法级功耗优化:在电路设计的开始,就要进行算法的选择,应该尽量选择功耗效率高的算法。首先,从实现算法所需逻辑的大小来看,算法中操作的数目、所需要的带宽、存储操作、端口操作越少,此算法应用到的电路功耗越低。在实际的设计中,需要按照应用的要求进行总体性能和功耗的均衡。同时,算法中需要的协处理必须考虑,算法所需的协处理越简单、协作模块越少、实现算法所需要的功耗就越小。此外,算法中临时变量少、临时变量有效的时间短、循环的合理运用都会降低算法所需的功耗。  系统级功耗设计与管理:系统级的功耗管理主要是动态功耗管理。通常的做法是处于空闲状态的时候,运作于睡眠状态,只有部分设备处于工作之中;当产生一个中断时,由这个中断唤醒其它设备。实际上,这一部分需要硬件的支持,如:电源系统的低功耗技术;系统软硬件的划分,在于决定哪些功能模块由软件来实现功耗较小,哪些功能模块由硬件实现功耗较小;低功耗处理器的选择。  系统硬件设计  综合考虑系统功耗来源与低功耗设计策略,硬件设计选择具有低功耗特性的单片机及射频收发芯片,并尽量简化电路减少功耗开支。  主要芯片的选择  msp430系列单片机的结构完全以系统低功耗运行为核心,电源采用1.8~3.6v 低电压,活动模式耗电250μa/mips,ram数据保持方式下耗电仅0.1μa。由于系统在90%以上的时间内都是处于休眠或低功耗状态,因此漏电流成为影响系统功耗的另一个重要因素,其i/o输入端口的漏电流最大仅为50na。加上有独特的时钟系统设计,包括两个不同的时钟系统:基本时钟系统和锁频环(fll和fll+)时钟系统或dco数字震荡器时钟系统。由时钟系统产生cpu和各功能模块所需的时钟,并且这些时钟可以在指令的控制下打开或关闭,从而实现对总体功耗的控制。由于系统运行时使用的模块不同,即采用不同的工作模式,芯片的功耗会有明显的差别。在系统中共有一种活动模式(am)和五种低功耗模式(lpm0~lpm4)。另外,msp430系列单片机采用矢量中断,支持十多个中断源,并可以任意嵌套。用中断请求把cpu唤醒只需要6μs,通过合理编程,既可以降低系统功耗,又可以对外部请求做出快速响应。  射频芯片是整个rfid卡最核心的部分,直接关系到标签的读写距离和可靠性,同时也直接影响到整个系统的功耗。cc1100是chipcon公司推出的单片uhf无线发射芯片,体积小,功耗低,数据速率支持1.2~500kbps的可编程控制,其工作电压范围为1.9~3.6v,可以工作在915mhz.、868mhz.、433mhz和315mhz四个波段,还可通过程序配置在所有频段提供-30~10 dbm输出功率内置地址解码器、先入先出堆栈区、调制处理器、时钟处理器、gfsk滤波器、低噪声放大器、频率合成器,功率放大器等功能模块。它具有两种低功耗工作模式:关机模式和空闲模式,在关机模式下工作电流小于200na。本文中cc1100工作在433mhz的频率上,采用fsk调制方式,数据速率为100kbps,信道间隔为200khz。  电路设计  为简化系统结构,本系统仅由必须的微处理器单元、射频收发单元、天线及电池单元组成。省去电池到器件之间的稳压电路,直接由电池给系统供电。节省了稳压电路所带来的静态电流消耗,使电池寿命进一步延长。为防止发射状态较大的电流造成电池电压瞬态降低,使用较大容量电容与电池并联。msp430f2012内部集成的零功耗欠压复位(bor)保护功能,可以在电压低于安全操作范围时执行完全复位,很好地解决了单片机复位不完全而产生的随机错误操作问题。  软件设计  尽量用软件来代替硬件也是低功耗系统设计常常采取的措施。本次程序开发综合考虑了时序调度和工作效率两方面问题,以降低系统的功耗。  合理

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭