当前位置:首页 > 嵌入式 > 嵌入式硬件

摘要:本文介绍压差归零式和风标对向式角度传感器在低速风洞中的校准方法、项目、数据处理和主要结果。安装在飞机或导弹表面的角度传感器,由于受到飞行器本体的干扰,传感器感受到的是被弯曲了的局部气流方向,因而人们不能直接获得飞行器真实角度。为了确定被弯曲了的气流方向与飞行器真实角度之间的关系,需要进行风洞校准测量。校准结果表明,角度传感器输出信号随飞行器角度变化具有良好的线性关系,校准数据稳定、可靠,且重复性令人满意。关键词: 角度传感器;传感器校准;风洞实验;飞行器 一、引言 航空航天领域广泛地应用传感器技术,在飞机和导弹等飞行器表面采用压差归零式和风标对向式两种角度传感器便是一例。飞行员借助安装在飞机表面的角度传感器可以随时了解飞行姿态。同样,地面操纵人员通过对安装在飞行器表面的角度传感器随时获得高空飞行器的飞行姿态信息,及时遥控引导。然而,由于气流受到了飞行器本体的干扰影响,角度传感器所感受到的局部气流方向是被飞行器外形表面弯曲了的,与飞行器真实姿态角是不相同的,因此必须预先确定传感器感受到局部气流方向与飞行器真实角度两者之间的相互关系,才能获得飞行器的实际姿态角,因此,需要对传感器进行风洞校准测量。 二、传感器工作原理 目前,飞行器上使用比较普遍的是压差归零式和风标对向式两种角度传感器。 压差归零式角度传感器外形结构见图1,其工作原理是利用压差归零特性。传感器由一个电位计和一个随时跟踪气流转动的测压探头构成,测压探头上开有两排气槽,气流由气槽通过两个通道作用到内部两对相反的叶面上,产生一个与气流方向相反的反馈力矩,使探头追随气流转动至两排气槽压力相等,即压差为零的初始位置,此时与探头同轴连接的电刷在电位计上产生角位移,输出与气流方向变化成正比的电信号。 风标对向式角度传感器外形结构见图2,工作原理是利用风标对气流的对向特性。传感器包括一个电位计和一个随时跟踪气流转动的方向风标。当飞行器姿态角变化时,风标相对气流方向随之变化,产生一个与飞行器角度变化相反的角位移。风标转轴与电位计同轴连接,因此,风标转动角度与电位计输出电压信号成正比,由此可以确定角度传感器感受到的气流方向与飞行器实际角度的对应关系。安装在飞行器左侧用于测量飞行迎角的传感器称为迎角传感器;安装在飞行器正上方用于测量飞行侧滑角的称为侧滑角度传感器。 三、试验设备 传感器校准实验是在航天科技集团公司笫701研究所低速风洞中进行的。该座风洞试验段尺寸为3m′3m′12m,试验风速在10~100m/s之间无级调速。风洞备有计算机控制的多自由度变角度系统,可以方便地模拟飞行器不同迎角、侧滑角状态,并且实时处理测试数据和绘制曲线。 四、校准项目与方法 1、校准项目 校准项目主要包括两部分,首先在地面进行的静校,以及随后在风洞中进行的动校。前者是确定传感器系数以及非线性、迟滞、重复性、综合精度等产品性能参数,后者是确定角度传感器与飞行器实际角度之间关系,其中包括飞行器不同姿态角,如迎角、侧滑角、滚转角等对传感器校准的影响。同时还可确定不同试验风速和传感器安装位置对传感器校准的影响,并通过风洞试验达到优选传感器安装位置的目的。 2、校准方法 传感器静校是属于常规方法,它的性能参数通常在产品使用说明书中提供。本文着重介绍在风洞中动校方法及其结果。 首先把飞行器安装在风洞支撑机构上,将飞行器姿态角(如迎角、侧滑角、滚转角等)都调整到零度,误差在3′以内。在飞行器左侧为迎角传感器,在飞行器正上方为侧滑角度传感器。传感器转轴要垂直飞行器表面,且传感器底座表面与飞行器表面外形保持一致,不能有突起或凹坑。传感器不要安装在表面曲率变化大的机头(或弹头)处,应在机身(或弹身)平直段前部位置。图3、图4是安装在弹体上的角度传感器在风洞中的校准照片。 五、数据处理 迎角传感器和侧滑角传感器数据处理方法是相同的,下面以迎

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭