当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]摘要:实现跟踪雷达系统中各子系统之间的实时通讯,重点是信号处理子系统中信号处理板和网络间的实时通讯。在实时操作系统VxWorks平台下,编写 PCI设备的驱动程序和网络通

摘要:实现跟踪雷达系统中各子系统之间的实时通讯,重点是信号处理子系统中信号处理板和网络间的实时通讯。在实时操作系统VxWorks平台下,编写 PCI设备的驱动程序和网络通讯程序,以完成通讯功能。VxWorks的高可靠性和强实时性在应用中得到了充分的验证,在VxWorks平台的支持下,信号处理子系统完成了信号处理和网络之间的实时通讯。 关键词:VxWorks 跟踪雷达 PCI 网络通讯 跟踪雷达在跟踪高速目标时,需要有足够快的反应速度,这不仅对它自身的硬件系统的实时性要求较高,而且对相应软件系统的实时性要求也较高。用实时操作系统 VxWorks作为跟踪雷达系统中的操作系统,可以满足软件对实时性需求。 本系统中,跟踪雷达各分机设备在相应处理计算机、控制计算机控制下协调工作,完成对目标的跟踪和测量雷达的引导,各分控计算机之间通过以太网接口相互通讯。跟踪雷达软件按功能分为主控、显示、信号处理、伺服控制、高频控制、光电控制六个子系统,分别对应不同的计算机。其中主控、信号处理、伺服控制、高频控制、光电控制子系统上都使用VxWorks操作系统,如图1所示。 1 VxWorks简介 目前市场上比较著名的实时操作系统有:

VxWorks、pSoS、Nucleus、VRTX、Windows CE、Palm OS、QNX、PowerTV、JavaOS、LynxOS等。其中,VxWorks是美国WRS(Wind River System)公司推出的一个具有微内核、可裁剪的高性能强实时操作系统,在实时操作系统市场上处于领导地位。它在航空、广播、运输、医疗、自动化生产和科学研究等领域中有着广泛的应用,尤其是在国防和军事上一些高精尖技术及实时性要求极高的领域中,体现出了其优越的性能。在1997年4月发射的火星探测器上也使用到了VxWorks。 (1)VxWorks的主要特点 VxWorks具有高度可剪裁的微内核结构,它需要的存储器空间大约为8KB~488KB(ROM)、620B~29.3KB(RAM)。可见 VxWorks有着极好的可伸缩性,用户可以利用工具或直接修改内核源文件来配置内核。VxWorks能进行高效的多任务调度,它支持中断驱动的优先级抢占式调度和时间片轮转调度,并具有确定的、快速的上下文切换能力,确定的、微秒级的中断延迟时间。这些使得内核具有非常强的实时性。 (2)VxWorks应用程序开发 除了性能出众的操作系统外,WRS公司还提供了优秀的实时操作系统开发工具Tornado。Tornado包含三个高度集成的组件:Tornado工具,一套强大的交叉开发工具;VxWorks实时操作系统;一整套主机-目标间的通讯选项,例如以太网、串行线路、在电路仿真(ICE)和ROM仿真等。 图2是Tornado开发系统组成框图,左边的框代表Tornado集成开发环境,它运行在开发主机上,可以基于WIN9x、WINNT、DIGITAL UNIX等主机操作系统。本文介绍的内容都是基于WIN9x系统的。右边的框代表目标机,目标机支持的CPU类型有MC680x0、PowerPc、 SPARC、SPARClite、i960、x86、R3000、R4000、R4650等。目标机上运行VxWorks实时操作系统,其上层运行用户应用程序。
Tornado集成了用于VxWorks应用程序开发和调试的各种工具。开发者在主机系统里,利用这个集成环境组织、编写、编译和调试应用程序,然后下载到目标机上运行、调试。编译在主机上完成,测试、调试需要主机目标机协调完成,流程如图3所示。 2 VxWorks在信号处理子系统中的应用 信号处理子系统采用摩托罗位的COMPACT PCI计算机,它的CPU为PII233MMX。该信号处理子系统的主要任务是通过网络接收来自主控子系统的数据和命令,传送给信号处理板;并且还要读取信号处理板的处理结果,将其通过网络传送给主控子系统和显示子系统。信号处理子系统软件可分为两部分:一是驱动程序,负责对信号处理板的初始化、配置和访问,另外用中断方式来响应信号处理板;二是网络通讯程序,负责与主控机握手、接收数据报文和发送数据报文。它的组成如图4所示,当信号处理板产生数据后,发出一次中断,中断服务程序触发发送进程读取信号处理板上的数据,然后发送给网络。网络通讯程序主要由五个并发的进程组成:poopClient、 BDPReceive、intProc20ms、intProcGate和messageHandle。PoopClient进行负责和主控子系统握手,获取主控机在线信息,以及传送本子系统在线信息。BDPReceive进程接收网络数据,然后送给messageHandle进程,经处理后再送到信号处理板上。IntProc20ms和intProcGate进程从信号处理板中读出数据,然后发送到网络中去。 STATUS appMain (void) { …… /* Connect the ISR */ if (pciIntConnect (INUM_TO_IVEC (INT_NUM_IRQ0+dsp_intLine),(VOIDFUNCPTR)dspISR,0)= =ERROR) …… /* Create some tasks */ if(taskSpawn("poop",100,0,2048,(FUNCPTR)poopClient,0,0,0,0,0,0,0,0,0,0) = = ERROR) …… if (taskSpawn("BDPRecv",80,0,2048,(FUNCPTR)BDPReceive,0,0,0,0,0,0,0,0,0,0) = = ERROR) …… if(taskSpawn("intProc20ms",70,0,2048,(FUNCPTR)intProc20ms,0,0,0,0,0,0,0,0,0,0) = = ERROR) …… if(taskSpawn("intProcGate",60,0,2048,(FUNCPTR)intProcGate,0,0,0,0,0,0,0,0,0,0) = = ERROR) …… messageHandle (); return (OK); }

信号处理板通过PCI总线和CPU板相连。在系统上电后,VxWorks对信号处理板进行一系列必要的初始化。首先在硬件初始化函数 sysHwInit()里,调用pciConfigLibInit()来选择PCI设备的配置机制Mechanism #1或Mechanism #2,接着调用pciConfigLibInit()对PCI设备中断进行初始化,建立中断链表。这两个步骤对PCI做了最基本的配置,随后的一些PCI 配置都以它们为基础。随着系统初始化的继续,在另一个硬件初始化函数sysHwInit2()里,调用了sysPciAutoConfig(),这个函数对PCI设备做了进一步的初始化。首先,它逐个查找PCI设备,先查找0号总线上的所有设备,一旦查到PCI-PCI桥设所有设备为止。查找过程中,这个函数对一些在总线上慢显现的设备作了一些特殊的等待处理。这会减慢系统启动的速度,若需要,用户可以通过修改内核源程序来避免等待。当确定了所有的设备后,函数再次查找一遍设备。这次,它创建一个PCI设备列表,把所有的设备都存到列表中。然后,函数根据这个列表,对每个设备做一些配置。它根据设备硬件上的设备映射设备存储空间和I/O空间,分配中断向量等,图4的PCI映射存储器空间就是这样映射的。然后,系统还对一些特殊的PCI设备做相应的配置。到此为止,系统对PCI设备的初始化工作就结束了。用户了解这些配置后,就可以在应用程序里对自己的PCI设备进行访问了。 操作系统启动后,开始执行usrAppInit()。这个函数的内容由用户自己编写,它完成用户所需的功能。在本系统中,因为程序不知道哪个槽上有哪种信号处理板,所以程序首先按槽号逐个查找一遍,以确定哪个槽有信号处理板;然后读出设备的PCI映射存储空间地址,以便对信号处理板进行读写,同时读出中断线的内容,进而通过pciIntConnect()来挂中断。pciIntConnect()函数考虑了PCI设备对中断资源的共享,这样不会破坏共享同一个中断信号的其它中断。中断处理使用了信号量机制,处理模式如图5下半部所示。当有中断产生时,中断服务子程序立即响应,它给相应的处理进程发送信号,处理进程即开始工作;在没接收到信号时,处理进程处于等待状态。

STATUS dspISR () { …… switch (intType) { case INT_20MS;/* INT_20MS=1 */ …… semGive (sem20ms); break; case INT_ACQGATE: /* INT_ACQGATE=2 */ …… semGIve (semAcqGate); break; default: …… break; } …… } void intProc20ms() { …… FOREVER { semTake (sem20ms,WAIT_FOREVER); …… } …… } void intProcGate () { …… FOREVER { semTake (semAcqGate,WAIT_FOREVER); …… } …… } 网络通讯程序使用SOCKET机制,因为通讯只涉及到一个小局域网,所以传输层采取UDP协议。程序中创建了一组消息队理,接收进程不停地接收 SOCKET传来的数据和命令,然后判断它们的类型,再分别存放到不同消息队列中,等待处理进程的处理,如图5上半部所示。处理进程的一个主要功能是将接收到的数据和命令按照规定的格式组合成命令字,传给信号处理板。另外,信号处理板处理完一批数据后,若向网上传送数据,则需要先发出中断,中断服务程序通知处理进程,把数据通过网络传给其它子系统。
这样,信号处理板和网络之间就能够顺利地通讯了。主控计算机可以通过网络实时地向信号处理板发送各种命令和数据,同时信号处理板也可将数据通过网络实时地传送给其它子程序。 信号处理子系统的程序开发是基于BSP的cpv5000,它为PCI设备提供非常好的支持,使得开发者对PCI设备访问变得非常轻松,VxWorks的网络功能也很健全,网络通讯易于实现。另外,VxWorks的多任务性及丰富的进程通讯机制为实现复杂的功能提供了必要的手段。本文中提到的所有功能都已在具体的项目中实现,VxWorks稳定可靠,实时性完全满足项目的需要。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭