当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]视频和静止图像的普遍采用,以及可配置系统(如软件无线电)日益增长的需求继续驱动DSP应用的扩展。很多应用需要经济有效的DSP处理。虽然定制实现DSP功能,但在很多应用中几种功能,如FIR(有限脉冲响应)滤波器,IIR(无限脉冲响应)滤波器、FFT(快速傅里叶)和混频器是共同的。所有这些功能都需要与加、减、累加一起的乘法单元组合。

视频和静止图像的普遍采用,以及可配置系统(如软件无线电)日益增长的需求继续驱动DSP应用的扩展。很多应用需要经济有效的DSP处理。

虽然定制实现DSP功能,但在很多应用中几种功能,如FIR(有限脉冲响应)滤波器,IIR(无限脉冲响应)滤波器、FFT(快速傅里叶)和混频器是共同的。所有这些功能都需要与加、减、累加一起的乘法单元组合。

FIR滤波器(图1)存储n数据单元系列,每个数据单元延迟一个附加周期。通常,这些数据单元称之为分支。每个分支与系数相乘,其结果求和产生输出。某些方法并行执行所有的乘法。更一般的方法是分为N级,用累加器从一级到下一级传递结果。这些实现方法用功能资源换取速度,取N个计算级并需要n/N个乘法器。根据系数是静态还是动态以及系数值设计,有不少其他通用的设计最佳化方法。

图1 典型FIR滤波器的实现

图2 实现FFT的Radix-2蝶形方法

实现方法

从图像压缩到确定数据取样的频谱成分,在不同的应用中都用FFT。实现FFT有多种方法。最通用的方法是通用Cooley-Tukey时间抽取,把FFT分解成若干更小的FFT。最简单的实现方法是用Radix-2蝶形单元(图2),其输入数据必须传递倍数。这种计算概念上是简单的;然而,图左边所有的乘和加是用复数计算的,所需要的乘和加的实数是更复杂的问题(如图右边所示)。

IIR滤滤器除引入反馈通路外,它类似于FIR滤波器。这些反馈通路使IIR滤波器的设计和分析比FIR更复杂。然而,对于相同硅面积,IIR方法可提供更强的滤波器。尽管有几种IIR结构,但是,一种通用的结构是用2阶四次方结构(图3)

很多应用是用混频器来变换信号频率。概念上,可用单个乘法器,而在数字应用中,用复数形式表示不少优点。最一般的形式是信号表示是为I和Q分量。

DSP选择

做为这些通用功能应用,大多数DSP应用的核心是乘、加、减或累加。通用DSP芯片与通用微处理器结合能有效地实现这些功能。乘法器数量通常1~4个,而微处理器通过乘和其他功能定序通过的数据,存储中间结果在存储器或累加器。主要靠提高乘法所用的时钟速度来提高性能。典型时钟速度为几十MHz~1GHz。性能用每秒MMAC(百万乘累加)度量,典型值10~4000。


需要较佳功能必须并联组合多个DSP引擎。这种方法的主要优点是直接实现用高级编程语言(如C语言)编写的算法。

DSP定向的FPGA能在一个芯片上并行实现很多功能。通用发送、逻辑和存储器资源互连功能、执行加法功能、定序和存储数据。某些基本器件仅提供乘法支持,需要用户建造其他逻辑功能。更复杂的器件提供加、减和累加功能做为DSP构建单元的一部分。FPGA通常带有几十乘法器单元,可工作在几百MHz的时钟频率。

图3 IIR2阶四次方滤波器

图4 ECP-DSP框图

DSP FPGA选择

Altera公司的Cyclone FPGA不包含DSP定向的元件,这使得实现大的DSP功能而不消耗大量的外部资源变得困难。然而,CycloneII包含乘法器功能,Xilinx公司的SpartanIII FPA家族具有基本的乘法器功能。没有DSP功能时,必须消耗大量的FPGA资源来实现一般设计中的加、减、累加和流水线寄存器。

Lattice公司专为DSP应用设计了ECP-DSP器件(图4)。它含有与4和10个集成sysDSP单元连接的低成本FPEA结构。sysDSP单元以3个数据通路宽度(9,18和36)支持4个功能单元。用户为DSP单元选择一个功能单元,然后选择其操作数的宽度和类型(符号/无符号)。sysDSP单元中的操作数可以带符号或无符号,但在功能单元中不能混合。

同样,在一个单元中操作数宽度不能混合。每个sysDSPK中的资源可配置来支持MULT(乘)、MAC(乘累加)、MULTADD(乘加/减)和MULTADDSUM(乘加/减和)元件。

每个单元中可用的元件数取决于所选择的数据通路宽度。把若干个元件连接起来可并联实现DSP功能。

sysDSP单元在输入,中间和输出级具有内置任选流水线寄存器。如需要,输入也可能并行输入或跨过阵列移位。也为带符号和不带符号运算和加减之间动态转换提供选择。在sysDSP单元中可得到流水线寄存器、和、减和累加。在一般的功能中,一般需要用加、和或累加组合乘法。概念简单的流水线寄存器在宽数据通路中实现要消耗大量的资源。用sysDSP单元实现这些功能可使通用FPGA资源消耗较低、性能较高,允许采用较低速度等级的更小器件。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭