当前位置:首页 > 嵌入式 > 嵌入式硬件

1 引 言

  变压器绕组直流电阻测试是变压器出厂及预防性试验的主要项目之一。按照iec标准和国标gb1094,变压器在制造过程中、大修后、交接试验和预防性试验以及绕组平均温升的测定和故障诊断中等都必须进行该项试验〔1〕。

  近几年有关电力变压器直流电阻的测试方法已在参考文献〔2~4〕中详细论述。这些方法可以分为两大类:静态和动态测量法。所谓静态测量法,指待绕组充电电流稳定后进行测量,它包括,增大回路电阻的电路突变法、高压充电低压测量法、磁通泵法等,它们都存在测量过程须依赖人工干预的缺点。所谓动态测量法,指不需要等到稳定后再测量,而是利用电感线圈充电过程中的电压、电流数据来测量其电阻。在动态测量法中,二阶振荡法对于回路中所串联的电容有较高的要求,还要求严格把握电流极值点,若di/dt≠0,而电感的数值又很大,所产生的电感压降ul=lx(di/dt)叠加于直流电阻极小的压降ur上,则降低测量精度。一般而言,静态测量法消耗时间较长,但是测量数据比较可靠;动态测量法快速高效,但是测量数据有时不太可靠。

  本文针对它们的各自特点,借助于ti(texasinstrument)公司信号处理器(dsp),提出了“消磁动态法”,力求将两类方法的优点集于一体,解决智能化、快速、可靠测量大型电力设备直流电阻的问题,尤其是大容量的三相五柱变压器的快速测量。

  2 测试系统原理分析

  2.1 消磁法基本思路

  常规研究三相三柱变压器的方法是把电力变压器绕组等效于电感和电阻的串联,绕组电流变化过程为
  其中,τ=lx/rx为回路时间常数;rx、lx为被测变压器绕组直流电阻、电感;e、i为电源和回路电流。

  下面简要分析三相五柱变压器的互感耦合绕组的电路过渡过程,其等效电路如图1所示。其中,r1为原边电阻;r2为副边电阻折合值;l为对应于激磁电抗的电感。此电路的阻抗函数为:



  此电路的强制响应(即端电压的稳态分量)和自然响应分别为:
  电路的全响应为强制响应与自然响应之和,即,

  待定常数a可由初始条件求得。因此,端电压的时间变化函数为
  那么,若将恒流源通入副边短路的变压器中时,虽然原边电流很快达到其稳定值,但由于副边感生电感电流的影响,原边电压要经过一长时间才达到其稳定值。由此可见,互感耦合绕组电路的过渡过程由次级参数决定,而与初级无关,即便是加大电源内阻也并不能影响次级时间常数。

  造成加电后感性绕组存在过渡过程的原因是磁通不能突变。当由一稳态转换到别一稳态时就需要过渡时间。如果略去剩磁,则测量变压器直流电阻时,其起始状态磁通为零。如果我们设法在整个测量过程中保持这种零状态,那就从根本上消除了过渡过程,达到快速测量的目的。

  测量高(中)压线圈的直流电阻的同时,在中(低)压线圈中加反向电流,目的是抵消电流磁场。也就是说,当测量高压侧直流电阻时,除在高压待测相线圈中加电流外,还应在相应的中压侧线圈中加一反向电流,使此电流产生之磁势与高压侧产生之磁势大小相等方向相反,如能同时加入则性能达到相互抵消。即,保证在整个测量过程中保持“零磁通”状态。其简图如图2(略去低压绕组)所示。



  设高压侧有n1匝,中压侧有n2匝,则高压侧磁势为n1i1,中压侧为n2i2,如n1i1+n2i2=0,则i2=-n1·i1/n2,因n1/n2=u1/u2,故,由铭牌上给定的某一分头电压比,即可求出匝数比。

  当测

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭