当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读] 在自动控制产品中,CPD+DSP+MCU的构架是目前最为流行的成熟方案,而在通讯产品中,大量使用FPGA设计,合理使用FPGA和DSP的组合,FPGA和DSP之间的“智能配分”可使无线系.

在自动控制产品中,CPD+DSP+MCU的构架是目前最为流行的成熟方案,而在通讯产品中,大量使用FPGA设计,合理使用FPGA和DSP的组合,FPGA和DSP之间的“智能配分”可使无线系统设计师获得最佳性能组合和成本——效能。应用DSP和FPGA组合可使成本降低。对于无线基站,FPGA和DSP可编程逻辑的系统配分,可促使更大的产品设计和市场成功率。

更高数据率的需求正在驱使无线蜂窝系统从窄带2G GSM,IS-95系统到W-CDMA基3G和3.5G系统(支持高达10Mbps峰值数据率)变革。将来,3Gpp远期变革规范面向复杂的信号处理技术,如多输入多输出(MIMO)以及新的无线电技术(如正交频分多址OFDMA,多载波码分多址MC-CDMA)。这些技术对于实现超过吞吐量100Mbps的目标起关键作用。

另外的OFDM基宽带无线系统,如WiMAX现在传输速度超过70Mbps。靠较高级的调制技术和变速率信道编码可以实现数据率的改善。复杂的空间信号处理方法(包括聚束和MIMO无线技术)也是增加数据率的办法。然而,这种技术对基站设计师所产生的问题是:需要可缩放性、成本、效率和跨越多个标准的灵活性。

多可变目标

无线系统设计师需要满足大量关键技术要求,包括处理速度、灵活性、产品上市时间。所有这些要求决定对硬件平台的选择。主要的变量包括处理带宽、灵活性和降低成本的路径。

处理带宽

WiMAX与W-CDMA和CDM2000蜂窝系统相比,明显地具有较高的吞吐量和数据要求。为了支持这些较高的数据率,基础硬件平台必须具有宽处理带宽。另外,几种先进的信号处理技术,如快速傅里叶变换/快速傅里叶逆变换(FFT/IFFT)、聚束、MIMO、波峰因数缩减(CFR)、数字预失真(DPD)都是计算密集的,需要每秒几百万乘和累加运算。

灵活性

WiMAX是一个相当新的市场,现正处于开发和采用阶段。现在仍然不清楚在这很多移动宽带技术(WiMAX,Wibrow,Super3G,LTE,Ultra3G等)中,哪一种将被大量采用。

现在,末端产品灵活性和可编程性对多协议基站是关键性的。

降低成本的路径

对于OEM和服务供应商来讲,为了保持竞争力,最终产品的成本比灵活性更重要。在样机设计阶段选择正确的硬件平台,为生产制造提供无缝降低成本的路径,这会节省上百万工程成本。否则,需要重新设计系统。

系统结构的逻辑任务分配

控制、信号处理和数据通路运行构成无线基站中处理负载的主体。实现这些功能的最通用方法是采用微控制器(MCU)、FPGA和可编程DSP的组合。MCU控制系统、而FPGA和DSP控制数据流处理。DSP软件实现系统的轻载处理要求和定向控制任务。重载最好的实现方法是用FPGA,因为FPGA具有很强的并行处理能力。

组合的DSP和FPGA确保整个系统的灵活性,并提供重新可编程性以确定系统缺陷,而且支持不同的标准。DSP和FPGA之间的分配策略依赖于处理要求、系统带宽、系统配置、发射和接收天线数。图1示出OFDMA基系统(如WiMAX或LTE)中基带物理层(PHY)功能的典型DSP/FPGA分配。

图1 OFDMA系统中DSP/FPGA分配

包含先进的多天线技术,这类系统所提供的吞吐量可达到75~100MPS。基带PHY功能可大致分为位级(bit-level)处理和符号级(Symbol-level)处理功能。

位级处理

位级处理单元包括发射端的随机化、前向纠错(FEC)、到四相相移键控(QPSK)和正交调幅(QAM)功能的交织和变换。相应的接收处理位级单元包括符号解变换、解交织、FEC解码和解随机性。

除FEC译码外的所有位级功能都是相当简单的,而且计算不是密集的。例如,随机性包含数据位的模2加法(借助简单伪随机二进制时序产生器输出)。尽管FPGA比固定总线宽度的DSP能为位级处理提供更大的灵活性。但是,低计算复杂性允许DSP处理这些功能。相比,FEC译码包括Viterbi译码、Turbo卷积译码、Turbo乘积译码和LDPC译码是计算密集的,而且DSP处理时会消耗有效带宽。

FPGA广泛用于卸载这些功能。同样FPGA也可用到MAC层的接口,以实现一定的较低MAC功能(如加密/解密和鉴别)。

符号级处理

OFDMA中的符号级功能包括子信道化和解子信道化、信道判断、均衡和循环前缀插入以及消除功能。时间—频率变换和频率—时间变换,分别用于FFT和IFFT实现。

信道判断和均衡可以离线执行,这涉及更多有关控制算法,适合用DSP实现。相反,FFT和IFFT功能是规则的数据通路功能,这包括非常高速下的复杂乘法,适合于用FPGA实现。

图2示出包含在高端FPGA(Altera公司StratixⅡ器件)内的嵌入式DSP单元。DSP处理器通常有多达8个专用乘法器,而StratixⅡ器件有多达384专用乘法器,提供的吞吐量高达346GMAC,这比现有的DSP高出一个量级。

图2 FPGA中的嵌入式DSP单元

当基站采用先进的多天线技术(如空时编码STC,聚束和MIMO方法),FPGA和DSP间信号处理能力的巨大差别更加明显。OFDM-MIMO组合被广泛认为是现在和将来WiMAX和LTE无线系统较高数据率的关键促进因素。

图1示出应用在基站中的多发送和接收天线。在这种配置中,对于每个天线流的符号处理是单独实现,在MIMO译码执行前产生单个位级数据流。在串行状态用DSP实现操作时,符号级复杂性随天线数线性增加。例如,用两个发送和两个接收天线时,FFT和IFFT功能消耗1GHz DSP近60%(假设变换大小是2048点)。相反,用FPG实现多天线基计算是非常有效的。FPGA提供并行处理和时间多路转换来自多路天线间数据。

多天线方法提供较高的数据率、阵列增益、分集增益和同信道干扰抑制。聚束和空间多路传输MIMO技术也是计算密集的,涉及矩阵分解和相乘。特别的Cholesky分解,QR分解和奇异值分解功能通常是解线性方程组。当这些功能很快用尽DSP能力时,而FPGA很适合实现这些功能。利用FPGA的并行性,采用更加成效的心缩式阵列结构方案。

数字IF处理

图3示出来自基带信道极的数据,送到RF板进行数字中频处理,包括数字上变频(DUC)、CFR和DPD。数字IF扩展了基带域到天线范围之外的数字信号处理。这增加了系统灵活性,并降低了制造成本。此外,数字频率变换比传流的模拟技术,能提供更大的灵活性和更高的性能(在衰减和选择性方面)。

图3 数字RF处理功能

需要CFR和DPD功能来改善用在基站中放大器效率。这些功能也有助于大大降低RF板的总成本。CFR和DPD包含复杂的乘法,取样率可高达100MSPS以上。类似于DUC,在接收端需要数字下变频(DDC)把IF频率变为基频。DUC和DDC都采用复杂的滤波器结构,包括有限脉冲响应(FIR)和级联积分梳状(CIC)滤波器。先进的FPGA提供运行速度高达350MHz的数百个18×18乘法器。这不仅提供并行处理多信道的平台,而且也是一个经济集成单芯片方案。

有效的设计方法

随着标准的稳定,对基站灵活性的要求将降低,而成本变为一个主要的成功因素。选择FPGA将会大大地节省成本。

混合FPGA/DSP基平台,为无线基站提供一种有效的设计方法。产品成功的关键是根据系统吞吐量要求和成本考虑在FPGA和DSP之间进行合理分配。这将保证产品最终不仅仅只是可缩放的和经济的,而且灵活、可配置适合多个标准。除成本因素外,使用FPGA可以更位快捷的的设计产品,方便了设计工程师的设计。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭