当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读] 微水试验法是一种瞬时向井中注入或抽取一定量的水,通过观测井水位变化情况,求得井附近含水层渗透系数的方法。对于渗透性较高的含水层,瞬时抽取或注入一定流量水后,井中水位很快恢复到初始水位

微水试验法是一种瞬时向井中注入或抽取一定量的水,通过观测井水位变化情况,求得井附近含水层渗透系数的方法。对于渗透性较高的含水层,瞬时抽取或注入一定流量水后,井中水位很快恢复到初始水位,不易观测井中水位降深随时间的变化;对于低渗透性含水层,瞬时抽取或注入一定流量水后,能够较好观测到井中水位降深随时间的变化,求得含水层水文地质参数。

1 地下微水检测系统的设计方案

该检测系统用于确定不同低渗透性含水层介质中的渗透参数。通过在含水层布置的钻孔中激发水头变化,实时测量水头随时间的变化,利用地下水动力学原理,计算含水层的渗透系数。

该系统通过MSP430单片机采集压力式液位变送器和温度传感器的信号,将采集的信号经过简单处理后上传到TMS320F2812进行分析处理,得到井下水面高度变化以及井下水温等参数的精确值,并送至液晶显示屏实时显示,同时对USB设备进行简单文件操作,便于数据存取。将μC/OS-Ⅱ实时操作系统移植到TMS320F2812中可提高系统的可靠性,具有良好的扩展性。

图1为该地下微水检测系统结构框图,它主要由主控单元TMS320F2812、数据采集、USB接口、液晶显示、电源及复位电路等模块组成。

2 系统硬件设计

2.1数据采集模块

数据采集模块用于采集液体的压力和温度值。该系统采用压力式液位变送器,它是采用高性能的硅压阻式压力充油芯体作为压力敏感核心,接入专门集成电路将传感器毫伏信号转换成标准电流信号输出。该压力式液位变压器再将标准电流信号传输给MSP430单片机。温度传感器采用数字温度传感器DSl8B20,该器件也将温度值传送给MSP430单片机。

2.2 USB接口模块

USB接口模块对U盘进行操作实现数据存储。这里选用CH375型USB接口器件。CH375是一款USB总线的通用接口器件,具有8位数据总线和读、写、片选控制线以及中断输出,可以方便的挂接到单片机/DSP/MCU/MPU等控制器的系统总线上。CH375支持5 V和313 V电源电压,支持低功耗模式。图2为USB接口模块硬件电路。

CH375的TXD引脚直接接地,CH375工作在并口方式。电容C4用于CH375内部电源节点退耦。电容C3和C5用于外部电源退耦,建议C3采用0.1μF的独石电容。为了使得CH375可靠复位,电源电压上升时间应小于100 ms。

3 系统软件设计

该检测系统软件设计主要包括MSP430数据采集模块、μC/OS-Ⅱ在TMS320F2812上的移植、μC/OS-Ⅱ下应用程序等3部分。

3.1 MSP430数据采集模块

MSP430数据采集模块软件程序设计采用模块化、结构化的设计方案。该模块软件设计从功能上可分为2部分,第1部分是与硬件密切相关的驱动程序,主要完成对硬件底层寄存器的操作,包括MSP430外部电路和内置外设;第2部分是跟硬件无关的应用程序,主要包括读取温度、压力采样、数据处理等。图3为MSP430数据采集模块的主程序流程。

3.2 μC/OS-Ⅱ在TMS320F2812上的移植

所谓移植,就是使一个实时内核能在某一微控制器或处理器上运行。为了提高可移植性,μC/OS-Ⅱ的绝大部分代码都是采用C语言编写的。一般情况下,这部分代码无需修改就可使用,因此该移植工作主要与4个文件相关:OS_CPU_A.ASM(汇编文件),OS_CPU.H,OS_CPU_-C.C(处理器相关C语言文件)和OS_CFG.H(配置文件)。修改完成以上4个文件即为在DSP上移植通用代码,此通用代码加上启动代码,组成在DSP上进行操作系统移植的完整移植代码。

3.3 μC/OS-Ⅱ下应用程序设计

移植实时操作系统μC/OS-Ⅱ是为了应用μC/OS-Ⅱ。移植成功后,需要在μC/OS-Ⅱ下编写各项功能程序。编写任务之前,需要定义任务堆栈的长度、任务堆栈以及声明任务函数,然后在适当的地方创建任务。

TMS320F2812实现各项功能的软件主要完成如下功能:与MSP430通信、对MSP430上传的数据进行分析再处理、液晶显示、USB存取数据。因此,本系统任务划分为:系统运行监视、USB存取、与从机MSP430通信、键盘液晶、实时时钟、运行指示等任务。各任务优先级分配如表1所列。图4为该系统应用程序总体流程。

4 实验结果

实验结果表明:采用TMS320F2812实现的地下微水检测系统,能够准确观测井中水位降深随时间变化的规律,利用这些试验数据求解出低渗透性含水层介质中渗透参数。该系统可在一个采样周期内高精度测量井中水位降深以及井下水温等参数。该检测系统的采样频率可以修改,例如:设l s采样10个数据,1个采样周期为1 min。即采样一次可获得600个数据,同时可手动按键设置测井编号、测量次数、测量时间等参数,针对不同场合在压力传感器范围内修正零点。测量数据通过USB接口读写和删除,便于后期统计处理测量数据;并采用液晶屏,具有良好的人机界面和操作性能。液晶屏可同时显示各种参数,全部操作可根据汉字提示直接输入,显示智能仪表现场无障碍输入。

5 结束语

该系统利用TMS320F2812的高速的数据处理功能。实现地下微水检测,具有可靠性高,易操作等优点。但需注意的问题:由于本装置野外作业,在供电电源条件不足的情况下,需电池供电,因此应在软硬件设计时,充分考虑系统低功耗工作的问题。该系统采用USB接口,便于存取、分析和处理数据,并将μC/OS-Ⅱ实时操作系统移植到TMS320F2812中,采用模块化的设计方案。大大缩短软件开发周期,同时有利于提高程序的实时性和产品的可扩展性。该系统已成功应用于现场,运行正常,达到预期项目要求。

发布者:小宇

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭