当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]1 引言目前,嵌入式系统在家电、移动电话、PDA等各种领域的应用日益广泛,程序设计也越来越复杂,这就需要采用一个通用的嵌入式操作系统来对其进行管理和控制。移植了操作系

1 引言

目前,嵌入式系统在家电、移动电话、PDA等各种领域的应用日益广泛,程序设计也越来越复杂,这就需要采用一个通用的嵌入式操作系统来对其进行管理和控制。移植了操作系统的嵌入式系统开发,可大大减轻程序员的负担,操作系统提供了多任务的管理功能,只需专注于每个任务的管理。对于不同的应用,可以按照相同的步骤完成系统设计。如果更换硬件平台,则只需要对操作系统进行少量的移植工作,与硬件无关的应用代码完全无需修改,同时,可增强代码的可读性、可维护性和可扩展性。

μC/OS-II是一种专门为微处理器设计的抢占式实时多任务操作系统,具有源代码公开、可移植性和可靠性高等特点。由于μC/OS-II是为嵌入式应用编写的通用软件,故在具体应用时需根据不同单片机的特点进行移植,其大部分代码是用标准C语言所写,只有与处理器相关的一部分代码用汇编语言编写,因而具有很强的移植性,能在从8位到64位单片机以及DSP等超过40种不同构架的微处理器上实现运行。本文主要介绍μC/OS-II在Samsung公司的一款ARM7TDMI的嵌入式处理器S3C44B0X上移植应用。

要实现μC/OS-II在S3C44B0X的构建、裁剪和移植,需要有S3C44B0X的编译器,本文采用的是英蓓特公司推出的EmbestIDE for ARM编译器。

2 μC/OS-II在S3C44B0X上移植的可行性分析

所谓移植,就是使一个实时内核能在某个微处理器或微控制器上运行。要使μC/OS-II能够正常运行,处理器必须满足以下几个条件:

(1)处理器的C编译器能产生可重人代码;

(2)在程序中可以打开或者关闭中断;

(3)处理器支持中断,并且能产生定时中断(通常在l0~l000Hz之间);

(4)处理器支持能够容纳一定量数据的硬件堆栈;

(5)处理器有将堆栈指针和其他CPU寄存器存储和读出到堆栈(或者内存)的指令。Samsung公司的S3C44BOX处理器能够满足以上的要求,所以可以将μC/OS-II移植到S3C44B0X上。

3 μC/OS-II在S3C44B0X上移植的概要

μC/OS-II硬件和软件的体系结构如图1所示。从图中可以看出,对μC/OS-II的移植实际上就是对与处理器有关的代码进行重写或修改。本文中移植代码结构由四部分组成,分别是用户代码部分、核心代码部分、设置代码部分、与处理器相关的移植代码部分。用户代码即应用软件,用来实现用户的具体要求,例如本文中和PC机的串口通讯代码;核心代码部分, 包含OS_CORE.C、COS_FLAG.C、OS_MBOX.C、OS_MEME.C、OS_Q.C、OS_SEM.C、OS_TASK.C、OS_TIME.C、μC/OS-II.C、μC/OS-II.H 十个文件;设置代码部分,即μC/OS-II配置代码,包含OS_CFG.H、INCLUDES.H 两个文件,用来配置事件控制块的数目以及是否包含消息管理相关代码等;与处理器相关代码即μC/OS-II要移植的处理器配置代码,包含OS_CPU.H、OS_CPU_A.ASM、OS_CPU_C.C三个文件,在μC/OS-II的移植过程中,用户所需要关注的就是这部分文件。


图1 μC/OS-II软硬件体系结构

4 μC/OS-II在S3C44B0X上移植代码分析

4.1 OS_CPU.H文件分析

OS_CPU.H包括用#define定义的与处理器有关的常量、宏和类型定义。

(1)定义与编译器相关的数据类型。

μC/OS-II为了保证可移植性,程序中没有直接使用int、unsigned int等定义,而是自己定义了一套数据类型,例如,INT8U表示8位无符号整型,INT16U表示16位无符号整型等。对于ARM这样的32位内核,INT16U是unsigned short型;若是16位的处理器,则是unsigned int型。不能使用bit型变量,把BOOLEAN型定义成unsigned char型。另外S3C44B0X数据宽度和堆栈宽度都是32位,分别将OS_STK和OS_CPU_SR定义成unsigned int型。

(2)义堆栈增长方向

在μC/OS-II中,用OS_STK_GROWTH来设置堆栈的增长方向,OS_STK_GROWTH为0表示堆栈从低地址向高地址增长;OS_STK_GROWTH为l表示堆栈从高地址向低地址增长,其宏定义为:

#define OS_STK_GROWTH l; //堆栈从高地址向低地址增长

#define OS_STK_GROWTH 0; //堆栈从低地址向高地址增长

(3)代码临界区

μC/OS-II在进入系统临界代码区之前需关中断,退出临界区后再开中断,则μC/OS-II能够保护临界区代码免受多任务或中断服务例程的破坏。在S3C44B0X中,通过设置状态寄存器CPSR中的中断禁止位来实现。μC/OS-II中的宏#define OS_ENTER_CRITICAL() IRQFIQDE定义将状态寄存器中的中断禁止位置位,以禁止所有的中断;#define OS_EXIT_CRITICAL() IRQFIQRE定义将状态寄存器的中断禁止位置零,以允许所有的中断。

(4)定义OS_TASK_SW宏

OS_TASK_SW宏是μC/OS-II从低优先级任务切换到高优先级任务时的调度,可以采用下面两种方式定义:一种是如果处理器支持软中断,那么可以使用软中断将中断向量指向OSCtxSw函数;另一种是直接调用OSCtxSw函数。本文用的是后一种方式。

4.2 OS_CPU_A.ASM文件分析

(1) OSStartHighRdy()函数

OSStart()函数调用OSStartHighRdy(),使就绪态任务中优先级最高的任务开始执行。

其示意性代码如下:


(2) OSCtxSw函数

该函数由OS_TASK_SW宏调用。OS_TASK_SW宏由OSSched函数调用。OSSched函数负责任务之间的切换。OSCtxSw函数在OSSched函数中负责将当前任务对应的处理器寄存器保存到堆栈中,并将任务中需要恢复的处理器寄存器从堆栈中恢复出来。

(3)OSIntCtxSw()函数

该函数由OSIntExit函数调用。OSIntExit函数由OSTickISR函数调用。OSIntCtxSW负责在定时中断任务之间的切换。目前提到的函数OSCtxSW和函数OSIntCtxSW均负责任务之间的切换,区别主要在于是否在定时中断期间负责任务切换。OSIntCtxSW函数主要当前任务堆栈指针,并将新任务对应的处理器寄存器从堆栈中恢复出来。

(4)OSTickISR()函数

时间节拍函数,由定时中断产生。主要负责在进入时保存处理器寄存器,完成任务时切换,推出时恢复寄存器并返回。OSTickISR()函数完成的操作和OSCtxSw()类似,只不过OSTickISR()是由硬件定时器溢出中断触发。其示意性代码如下:


4.3 OS_CPU_C.C 文件分析

这个源文件中有6个函数需要移植,即OSTaskStkInit()、OSTaskCreatHook()、OSTaskDelHook()、OATaskSwHook()、OSTaskStatHook()和OSTASKTickHook()。后面5个函数又称为钩子函数,主要用来扩展μC/OS-II功能。但必须声明,并不一定要包含任何代码。唯一必须移植的函数是OSTaskStkInit()。该函数在任务创建时被调用,它负责初始化任务的堆栈结构。这个函数在大部分ARM处理器中移植时都可以采用一种形式。

5 测试移植代码

在EmbestIDE编译器上编译基于S3C44B0X的μC/OS-II操作系统代码。编译结果表明,裁剪后的μC/OS-II操作系统的代码占用的空间少,代码通过了编译。为了验证基于S3C44B0X的μC/OS-II操作系统移植的是否成功,本文创建了两个测试任务来验证其合理性。

创建的2个测试任务及源码如下:


多任务调度开始后,通过超级终端接收的UART0的数据为:taskA taskB taskB taskA taskB taskB taskA taskB taskB taskA taskB taskB taskA taskB taskB taskA taskB taskB ……。高优先级的任务TestTransplantA()首先被调度运行,说明OSTaskStkInit()和OSStartHighRdy()函数是正确的。任务TestTransplantA()和任务TestTransplantB()由时钟节拍驱动而周期地被调用,说明OSCtxSw、OSIntCtxSw()、OSTickISR()也是正确的。通过以上两点可以认为移植结果是正确的。

6 结束语

在μ;C/OS-II平台下开发程序,首先要掌握内核。通过上述移植过程,能够对任务堆栈,任务调度有深刻理解。作为一种开放源代码的操作系统,以其优越的性能在嵌入式系统应用领域占据了非常广泛的发展空间。移植结果表明,经过裁剪的μC/OS-II在S3C44B0X上的移植是成功的。



langen

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭