当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读] NXP公司的LPC32x0 16/32位 ARM9微控制器具有硬件浮点协处理器,USB OTG以及EMC存储器接口,32KB指令缓存和32KB数据缓存,是一个通用的ARM926EJ-S 32位微处理器。 LPC32x0系

NXP公司的LPC32x0 16/32位 ARM9微控制器具有硬件浮点协处理器,USB OTG以及EMC存储器接口,32KB指令缓存和32KB数据缓存,是一个通用的ARM926EJ-S 32位微处理器。

LPC32x0系列可工作在高于200MHz的CPU频率下。LPC32x0系列还包含有256kB的片内静态RAM、1个NAND Flash接口、1个以太网MAC、1个支持STN和TFT面板的LCD控制器、1个支持SDR和DDR SDRAM以及静态设备的外部总线接口。此外,LPC32x0系列包括1个USB2.0全速接口、7个UART、2个I2C接口、2个SPI/SSP端口、2个I2S接口、2个多通道PWM、4个带有捕获输入和比较输出的通用定时器、1个加密数字(SD)接口和1个带有触屏感应选项的10位A/D转换器。可提供高性能和非常低的功耗,广泛应用在消费类电子,汽车电子,医疗仪器设备,网络控制和工业领域。本文介了LPC32x0系列的主要性能和方框图。

NXP Semiconductor designed the LPC32x0 family for embedded applications requiring
high performance combined with low power consumption.
NXP achieved their performance goals using 90 nanometer process technology to
implement an ARM926EJ-S CPU core with a Vector Floating Point co-processor and a
large set of standard peripherals including USB On-The-Go. Figure 1 shows a block
diagram of the LPC32x0 family. The LPC32x0 family operates at CPU frequencies
exceeding 200 MHz. The basic ARM926EJ-S CPU Core implementation uses a Harvard
architecture with a 5-stage pipeline. The ARM926EJ-S core also has an integral Memory
Management Unit (MMU) to provide the virtual memory capabilities needed to support the multi-programming demands of modern operating systems. The basic ARM926EJ-S core also includes a set of DSP instruction extensions including single cycle MAC operations and native Jazelle Java Byte-code execution in hardware. The NXP implementation has a 32 KB Instruction Cache and a 32 KB Data Cache.
For low power consumption, the LPC32x0 family takes advantage of NXP
Semiconductors advanced technology development to optimize Intrinsic Power, and uses software controlled architectural enhancements to optimize application based Power Management.

The LPC32x0 family also includes 256 KB of on-chip static RAM, a NAND Flash interface, an Ethernet MAC, an LCD controller that supports STN and TFT panels, and an external bus interface that supports SDR and DDR SDRAM as well as static devices. In addition, the LPC32x0 family includes a USB 2.0 Full Speed interface, seven UARTs, two I2C interfaces, two SPI/SSP ports, two I2S interfaces, two multi-channel PWMs, four general purpose timers with capture inputs and compare outputs, a Secure Digital (SD) interface, and a 10-bit A/D converter with a touch screen sense option.

主要特性:
ARM926EJS processor, running at CPU clock speeds up to 208 MHz
A Vector Floating Point coprocessor.
A 32 KB instruction cache and a 32 KB data cache.
Up to 256 KB of internal SRAM (IRAM).
Selectable boot-up from various external devices: NAND Flash, SPI memory, USB,
UART, or static memory.
A Multi-layer AHB system that provides a separate bus for each AHB master, including
both an instruction and data bus for the CPU, two data busses for the DMA controller,
and another bus for the USB controller, one for the LCD and a final one for the
Ethernet MAC. There are no arbitration delays in the system unless two masters
attempt to access the same slave at the same time.
An External memory controller for DDR and SDR SDRAM, as well as static devices.
Two NAND Flash controllers. One for single level NAND Flash devices and the other
for multi-level NAND Flash devices.
A Master Interrupt Controller (MIC) and two Slave Interrupt Controllers (SIC),
supporting 74 interrupt sources.
An eight channel General Purpose AHB DMA controller (GPDMA) that can be used
with the SD card port, the high-speed UARTs, I2S ports, and SPI interfaces, as well as
memory-to-memory transfers.
Serial Interfaces:
A 10/100 Ethernet MAC with dedicated DMA Controller.
A USB interface supporting either Device, Host (OHCI compliant), or On-The-Go
(OTG) with an integral DMA controller and dedicated PLL to generate the required
48 MHz USB clock.
Four standard UARTs with fractional baud rate generation and 64 byte FIFOs. One
of the standard UART’s supports irDA.
Three additional high-speed UARTs intended for on-board communications that
support baud rates up to 921,600 bps when using a 13 MHz main oscillator. All
high-speed UARTs provide 64-byte FIFOs.
Two SPI controllers.
Two SSP controllers.
Two I2C-bus Interfaces with standard open drain pins. The I2C-bus Interfaces
support single master, slave and multi-master I2C configurations.
Two I2S interfaces, each with separate input (RX) and output (TX) channels. Each
channel can be operated independently on 3 pins, or both input and output
channels can be used with only 4 pins and a shared clock.
Additional Peripherals:
LCD controller supporting both STN and TFT panels, with dedicated DMA
controller. Programmable display resolution up to 1024x768.
Secure Digital (SD) memory card interface, which conforms to the SD Memory
Card Specification Version 1.01.
General purpose input, output, and I/O pins. Includes 12 GP input pins, 24 GP
output pins, and 51 GP I/O pins.
10 bit, 400kHz A/D Converter with input multiplexing from 3 pins. Optionally, the
A/D Converter can operate as a touch screen controller.
Real Time Clock (RTC) with separate power pin. This RTC has a dedicated 32 kHz
oscillator. NXP implemented the RTC in an independent on-chip power domain so
it can remain active while the rest of the chip is not powered. The RTC also
Includes a 32 byte scratch pad memory.
A 32-bit general purpose high speed timer with a 16-bit pre-scaler. This timer
includes one external capture input pin and a capture connection to the RTC clock.
Interrupts may be generated using 3 match registers.
Four enhanced Timer/Counters which are identical except for the peripheral base
address. A minimum of two Capture inputs and two Match outputs are pinned out
for all four timers, with a choice of several pins for each. Timer 1 brings out a third
Match output, while Timers 2 and 3 bring out all four Match outputs.
A 32-bit Millisecond timer driven from the RTC clock. This timer can generate
Interrupts using 2 match registers.
A Watchdog Timer. The watchdog timer is clocked by PERIPH_CLK.
Two versatile PWM blocks with 6 and 4 outputs respectively, programmable
resolution, and an external clock capability.
Two additional single output PWM blocks.
Keyboard scanner function allows automatic scanning of up to an 8x8 key matrix.
Up to 18 external interrupts.
Standard ARM Test/Debug interface for compatibility with existing tools.
Emulation Trace Buffer with 2K x 24 bit RAM allows trace via JTAG.
Stop mode saves power, while allowing many peripheral functions to restart CPU
activity.
On-chip crystal oscillator.
An on-chip PLL allows CPU operation up to the maximum CPU rate without the
requirement for a high frequency crystal. Another PLL allows operation from the 32
kHz RTC clock rather than the external crystal.
Boundary Scan for simplified board testing.
296 pin TFBGA package.
主要应用:
Consumer
Automotive
Medical
Network Control
Industrial

图1.LPC32x0系列方框图

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭