当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]与多年前相比,现在的移动消费电子装置结构复杂,功能丰富,能够存储大量音乐、照片和视频内容。让人欣慰的是,存储系统的体系结构能够适应这些新的数据密集型应用。例如,

与多年前相比,现在的移动消费电子装置结构复杂,功能丰富,能够存储大量音乐、照片和视频内容。让人欣慰的是,存储系统的体系结构能够适应这些新的数据密集型应用。例如,适用于大容量存储的高性价比紧凑型 NAND 闪存就替代了手机、MP3 播放器和数码相机中使用的 NOR 闪存和其它非易失性存储装置。

随着工艺技术的进步,存储器密度大约每 12 至 18 个月即提高一倍。对于 NAND 闪存而言,这意味着对多层单元 (MLC) 技术的重视程度日益提高。传统的单层单元 (SLC) NAND 闪存每个存储单位能够存储一个数据位。MLC 技术能够实现在单个存储单元中存放多个数据位,数据的存储容量达到相同大小 NAND 闪存设备的两倍。MLC NAND进一步加快了 NAND 闪存的每字节成本,并为新的应用提供了发展空间。市场趋势显示MLC 闪存的出货量在 2007 年初超过了 SLC 闪存。

MLC NAND 的采用,NAND 产品周期的缩短让系统设计人员的工作越来越复杂。传统的SLC NAND 闪存,每 512 字节只需要一位错误校验码,大多数新型嵌入式处理器都可以直接为其提供支持。而现在的 MLC 闪存设备却不同,需要每 512 字节扇区 4 位校验码,将来的 MLC NAND 对 ECC 的要求将超过每 512 字节扇区 8 位校验。高级 ECC 算法的实现和硬件加速电路对嵌入式处理器和主机系统在设计方面构成了很大的挑战。

系统设计人员还必须能够应对 NAND 闪存的快速更新换代,以及不同供应商之间产品功能差别带来的挑战。系统设计人员和处理器制造商为跟上 NAND 闪存制造商的步伐必须在硬件和软件开发方面进行更多资源投入。更为重要的是,额外的开发工作可能会对上市时间产生较大影响。

Micron 可管理 NAND

正确的解决办法是:采用 Micron 的创新式可管理 NAND 产品。可管理 NAND 闪存将Micron 的高质量低成本 NAND 闪烁存储器与半高型高速MultiMediaCard. (MMC) 控制器结合在一起,并采用了符合 JEDEC 标准的 BGA 封装和高级 10 信号接口。

MMC 是一种特征突出的高性能接口,无线消费电子应用中的几乎所有嵌入式处理器均支持该接口。如果使用 8 位数据总线和标准 BGA,可管理 NAND 支持 52 MB/秒(峰值)的接口速率。因为处理器的接口没有变化,所以 BGA 中的 NAND 底层技术可以在不影响应用的情况下更改。这种方法能够延长更高密度解决方案的使用寿命,从而能够通过一种系统主板设计支持多种元件密度。

可管理 NAND 的另一个主要优势是消除了对主机处理器上特定供应商闪存固件及驱动程序的依赖(这种依赖性使得主机处理器需要协调程序/擦除/读取功能并管理坏块和坏位)从而将标准的 NAND 成为简单的读写设备。主机处理器不必考虑诸如 NAND 块大小、页面大小、新增功能、进程产生、MLC 与 SLC、平均读写算法以及 ECC 要求等不必要的NAND 功能细节。只要具有工业标准的通用 MMC 设备驱动程序即可让处理器与 Micron可管理 NAND 以及其它供应商生产的符合相同标准的产品实现无缝配合。

可管理 NAND 设备概念已被提议作为一种行业标准被大家接受。The

MultiMediaCard Association 和 JEDEC 于 2006 年 12 月联合宣布将 eMMC. 作为此类别闪烁存储设备的名称和商标。

 


图 1:NAND 闪存配置可管理 NAND 功能

可管理 NAND 是一种具有 MMC 接口的多合一存储器和控制器设备。它符合MMC 系统规范版本 4.2,并且与 MMCplus.、MMCmobile.、MMCmicro. 以及过去的MMC 完全兼容。

主要功能:

. . 可同时支持 MMC 和 SPI 模式操作

. . 主机可选择 x1、x4 和 x8 I/O

. . 52 MHz 时钟速度(最高)

. . 416 Mb/s (52 MB/s) 数据速率(最高)

. . 3.3V 和 1.8V 工作电压

. . 密码保护

. . 永久和临时写保护

. . 内部 ECC、平均读写算法和数据块管理。

可管理 NAND 的 JEDEC 标准 BGA 封装具有集成诸如 DRAM 等其它存储器组件的潜在能力,可以帮助系统设计人员实现高度集成的系统存储解决方案。

 


表 1:可管理 NAND 属性

 


图 2:可管理 NAND 封装细节

注释:尺寸单位为毫米。

系统实现方式

如果主机处理器可以与标准 NAND 闪存直接接口,则可实现最低的物料清单 (BOM) 成本。除非处理器具有用于 NAND 所需的内置支持,否则 NAND 闪存的操作复杂性可能会令系统设计人员头痛。

可通过软件实现相对简单的 SLC NAND 闪存 ECC 算法,但是更高性能的应用需要硬件支持。将来的 MLC 设备将需要更复杂的 ECC 和数据块管理功能,并且会不断地将需求附加到处理器支持硬件上。

在选择 NAND 解决方案时,系统设计人员应考虑开发资源以及系统性能与应用需求之间是否匹配。开发团队是否具有软件开发资源,并且具有 NAND 存储器数据块管理软件代码?选择用于项目的嵌入式处理器是否具有适用于 NAND 设备的 ECC 功能?如果具有,ECC 是否支持 MLC NAND 闪存所需的更大位校验要求,以及是否具有应用所需的足够性能。


图 3:NAND 存储器选择树形图

另一个要考虑的问题是不同供应商原始提供的 NAND 设备之间的兼容性,以及如何将系统设计扩展到后几代 NAND 闪存。

在许多情况下,开发资源的缺乏、处理器的限制,以及对性能的要求使得可管理 NAND 成为适用于项目要求的最理想的解决方案,它同时还具有成本最低,上市时间最短的特点。[!--empirenews.page--]

可管理 NAND 消除了 SLC/MLC 和不同页面尺寸等 NAND 闪存依赖性。其中包括了

一个标准数据块级接口以及一个错误管理和平均读写控制器,从而让处理器不必处理这些任务。根据处理器提供的 NAND 闪存的不同,这一特性能够节省宝贵的处理时间和代码存储空间。该功能即可消除对更高性能处理器或额外硬件/软件设计资源的依赖。

可管理 NAND 可以连接到无线和消费电器设备中使用的众多嵌入式处理器上的

SD/MMC 端口。除电源外,这一简单的接口还具有 3、6 或 10 个信号 I/O,对应于时钟总线、命令总线以及 x1、x4 或 x8 数据总线。

可管理 NAND 控制器被优化为能够利用程序缓存和读取缓存等特定 NAND 闪存性能

特征。这些特性能够在原始 NAND 实现中提供明显的性能提升。还可以直接从 NAND 启动系统。

 


图 4:系统结构示意图

总结

对于需要大容量数据存储的移动消费电子设备而言,NAND 闪存从技术角度而言是您最合适的选择。NAND 闪存已经从传统的 SLC 发展到 MLC NAND,MLC 需要更高级别 的 ECC。设计人员面临的挑战是一方面要符合今后 MLC NAND 闪存设备日益提高的 ECC 要求,另一方面仍要支持所有 NAND 设备所需的数据块管理和平均读写例程。

Micron 的可管理 NAND 让系统设计过程中 NAND 闪存实现方式的复杂程度有所降低。它将内部控制器和 NAND 闪存部件结合在 JEDEC 标准 BGA 封装中。它具有一个可以被大多数移动和消费电子设备中多种处理器支持的 MMC 接口。

如果嵌入式主机处理器能够与 NAND 闪存直接实现接口,则系统设计人员可以获得很低的 BOM 成本。但是,如果资源有限,并且处理器无法直接与 NAND 闪存实现接口,则可管理 NAND 能够提供更吸引人的解决方案。

Micron 的可管理 NAND 能够以便于使用的 BGA 封装方式提供所有必需的 NAND 闪

存管理功能,节省了大量以前需要进行硬件和软件开发的资源。除了提供所有主要功能外,可管理 NAND 还可以通过分担处理器承担的多项底层任务负荷,提供更高的性能。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭