当前位置:首页 > 嵌入式 > 嵌入式硬件
[导读]ISA总线基于IBM鼻祖计算机所具有的1MB空间的8位总线,扩展成为具有16MB空间的16位总线。在兼容性保持方面给予了足够的重视,具体地说就是将ISA总线分成两个插口(CardEdge),

ISA总线基于IBM鼻祖计算机所具有的1MB空间的8位总线,扩展成为具有16MB空间的16位总线。在兼容性保持方面给予了足够的重视,具体地说就是将ISA总线分成两个插口(CardEdge),与16位扩展相关的信号都被分配到小的插口(添加的)上。除此之外,我们还可看到在信号关系方面,为了保持兼容性也做了相当细致的工作。

下面,我们将在利用扩展部分及存储器空间的基础上针对必须注意的信号进行解说。在说明中,我们假设将ISA总线的插口中靠近面板一侧(较宽的一侧)的称为8位总线部分,将另一个插口称为16位扩展部分。

1. 地址

地址总线以不同的信号名称交叠存在,8位总线部分为SA0~SA19,16位扩展部分为LA17~LA23。PC/AT的思路是将主存储器也扩展到ISA总线上,因此,只要认为可以在1M字节(100000h地址)以上的范围内简单配置以128K字节为单位的扩展存储器卡、拥有到LA17为止的地址即可。

2. 存储器读/写信号

存储器的读/写信号在8位总线部分具有SMEMR及SMEMW信号,而在16位扩展部分具有MEMR及MEMW信号。

两者虽然具有完全相同的意思,但有效的范围不同。MEMR和MEMW在进行ISA总线的存储器存取操作中必须有效,而SMEMR及SMEMW只在存取1M字节以内的范围(000000h~0FFFFFh)时有效。

这是为了保持低位的兼容性。由于8位总线的存储器空间为1M字节,所以地址总线只有20根(SA0~SA19)。因此,单从8位总线的地址看,不能区分CPU连接了0地址、100000h地址还是200000h地址等。如果将原来的8位总线卡插人ISA总线,则当访问1M字节以上的空间时,若SMEMR及SMEMW也有效,就是非常糟糕的事情了。因此,设计时就需要将其设计成只能在1M字节以内的空间访问时有效。

曲于本次将SRAM主板放置在000000h~0DFFFFh地址,所以利用了SMEMR及SMEMW信号。

3. 刷新

由于曾有过在ISA总线上利用DRAM对主存储器进行扩展的想法,所以刷新周期大约为15.6μs。该刷新操作与REFRESH信号一起有效,在地址低位的8位(SA0~SA7)上附上刷新地址,就可以形成存储器读取周期。

这类似于哑元的存储器读取周期,本次为了以防万一,将其设为不应答。

4. 等待关系

本次不利用与等待相关的信号,仅做一些说明。

ISA总线还包括为了延长CPU总线周期的等待信号(IOCHRDY)以及缩短总线周期、提升速度的SRDY(有时也表示为ZWS及OWS)信号。

在目地端针对主机的要求不能立即应答的情况下,利用IO-CHRDY等待总线周期的结束,以低电平表示Not Ready,也就是等待的意思。由于借助ISA总线的上拉电阻通常将其设置为高电平,所以只要不做任何更改,它将不会处于等待状态,只是执行普通的总线周期。

SRDY信号则相反,是能够缩短总线周期的信号。ISA总线的情况下,16位存储器存取操作(MEMCS16有效)虽然能够在3个周期内完成,但为了能让通常需要6个周期完成的8位存储器存取操作缩短到3个周期,就可以利用SRDY信号。

5. 8位存储器周期

ISA总线的8位存储器存取周期如图所示,并列了标准周期、利用了IOCHRDY信号的插人一个等待的示例以及利用了SRDY信号的不等待存取的操作示例。

 


图 ISA总线的8位存储器存取周期

由于SYSCLK通常为8MHz,所以一个周期为125ns。现如今SRAM的存取时间在100ns以内的非常普通,所以可以说这是非常缓慢的总线周期。8位存储器周期如果不采用等待信号,则可以在6个周期内完成存取操作。

BALE在高电平期间地址发生变化,地址(SA0~SA19)确定后,BALE变为低电平,指令(SMEMR/ SMEMW)有效后开始存取操作。

因为作为高位地址的LA17~LA23在BALE变为低电平后,在规格上是不定的,所以需要提前在BALE上锁存译码结果,锁存LA。事实上,曲于在主板上特意改变LA没有任何意义,所以,LA并不是不定的,一般是与SA同样保持输出状态。尽管如此,在这方面也需要加以注意。由于本次配置的地址在1M字节以内的范围(0D0000h)内,不会利用到LA,因而不必注意此处。

在写操作时,指令(SMEMW)有效之前尽早确定数据,存储器由于是在SMEMW的上升沿提取数据的,所以对于建立时间,可以说有足够的富余时间。指令有效之后,主机与时钟的上升同步监视IO—CHRDY信号,如果IOCHRDY变为低电平,就插入等待信号。

本次不是特别需要等待信号,因此只按照原来的默认时序进行。在结束第6个周期时指令无效。在进行读操作时,以这样的时序提取数据。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭