当前位置:首页 > 嵌入式 > 嵌入式硬件

1 板间共享存储器的硬件接口电路和软件控制流程

1.1 信号处理板硬件接口电路

基于DSP的信号处理板可以根据应用要求运行许多信号处理算法,如信号预处理、目标识别与跟踪定位、Kalman滤波等。待处理的原始信号数据通过板间通信从数据采集板获得。这里采用板间共享存储器的方法来完成数据交换,DSP既可以从共享存储器读取采集数据,也可以把处理结果(如新的程控放大倍数值,跟踪定位结果等)写到共享存储器中供MCU读取。

TMS320C32有一个双向串行口,可以设置每帧同时收发8/16/24/32位数据,同步时钟可以由内部串口定时器产生或由外部输入。通过设置串口全局控制寄存器来控制串口的总体功能和工作模式;通过设置FSX/DX/CLKX端口控制寄存器和FSR/DR/CLKR端口控制寄存器来控制串口6个引脚的功能,可以软件设置每个引脚为通用的I/O引脚或串口通信引脚。TMS320C32有两根通用的I/O引脚为XF0和XF1,由于共享存储器接口电路需要4根控制线来进行DSP与MCU间的握手通信,这里把串口的2个引脚FSR0和FSX0设置为通用的I/O引脚用作控制线。接口电路原理图如图1所示。

图中RAM0~RAM3是四片容量为512K的8位高速RAM(芯片型号为CY7C1049-17VC),组成32位数据宽度的存储器,DSP运行时的程序和数据都在这四片RAM中。FLASH(芯片型号为Am29F016)用于存储程序和初始化数据,即使掉电内容也不丢失,DSP上电时由自带的BOOT LOADER程序从FLASH中取出程序到四片RAM中运行。从共享存储器读取的采集数据也暂存到这四片RAM中。

1.2 数据采集板硬件接口电路

基于单片机AT89C51的数据采集板在单片机的全局控制下,通过对多路声传感器输出的微弱信号进行程控放大、低通滤波、同步采样保持、A/D变换,实时同步采集多路信号,并把采集到的信号数据存放在数据采集板上的128K共享存储器(芯片型号为CY7C109-12VC)中。

共享存储器及其总线隔离电路设计在数据采集板上。在某一时刻,共享存储器只能被某一方访问,否则会产生总线冲突。这里由MCU切换选通DSP总线或单片机总线,分时访问共享存储器。总线隔离芯片选用常见的双向总线隔离/驱动芯片74HC245,它有一个输出使能引脚(E)和一个数据传输方向(DIR)引脚,MCU通过控制这两个引脚来完成总线隔离与数据传输方向控制功能。接口电路原理图如图2所示。图中,MCU端的总线隔离由一片74HC373和两片74HC245完成,DSP端由三片74HC245完成数据总线和地址总线的隔离。由P1.2控制选通哪组总线,当P1.2为低电平时,共享存储器只能被MCU访问;当P1.2为高电平时,只有当P1.3也为高电平时(表示MCU同意让出共享存储器),共享存储器才能被DSP访问。由于DSP需要读或写共享存储器,所以需要软件设置数据总线隔离芯片74HC245的数据传输方向,这里通过设置DSPDIR信号线的电平状态来完成(高电平时为读,低电平时为写)。由于地址总线的数据传输方向始终是单向的,所以其隔离芯片的DIR端可以固定接低电平或高电平,视74HC245的实际接线而定。
1.3 软件控制流程

信号处理板上的DSP需要采集信号数据时就向数据采集板上的MCU发出请求信号,单片机接收到请求信号后,如果同意让出共享存储器,则向DSP发出应答信号,同时隔离MCU端的总线,暂停数据采集。DSP接收到应答信号后就可以访问共享存储器,DSP快速读、写完数据后,向单片机发结束信号,单片机接收到结束信号后,收回共享存储器,同时隔离DSP端总线,继续采集。这样数据采集与信号处理就可以同时进行,不同于一般的采集一段处理一段的串行工作模式,实现了数据采集零等待,增加了系统的吞吐能力。参见图3的接线图,一次完整的通信过程详述如下,注意在DSP程序初始化时应把XF0、XF1、FSR0设置为相应的无效状态。 1?DSP需要采集信号数据时向MCU发请求信号(置XF0为低电平),触发MCU的INT0中断,等待MCU应答(DSP循环检测XF1的状态)。

2?如果MCU同意让出共享存储器,则响应中断,否则等待。在中断服务程序中,置P1.3(即DSPACK)为高电平,表示应答。同时置P1.2为高电平,选通DSP总线。MCU接着循环检测P1.4?即DSPEOR)的状态。

3?DSP收到应答信号(即检测到XF1为高电平),立即快速读写共享存储器,在读操作前,置FSX0为高电平,在写操作前,置FSX0为低电平。读写完

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭