当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]导电能力介于导体与绝缘体之间的物质 - 半导体 硅和锗是位于银、铝等导体和石英、陶瓷等绝缘体之间,用于制造半导体器件的原材料,具有一定电阻率。不同的物质其产生的不同

导电能力介于导体与绝缘体之间的物质 - 半导体

硅和锗是位于银、铝等导体和石英、陶瓷等绝缘体之间,用于制造半导体器件的原材料,具有一定电阻率。不同的物质其产生的不同电阻率是由于可移动的电子量不同引起的。这种可移动电子叫“自由电子”。一般我们把可以通过向其摻入杂质来改变自由电子的数量,并可控制电流动的物质称为半导体。

根据电流流动的构造,可将半导体分为N型和P型两类。

半导体的电流流通原理

(1) N型半导体

图1是在硅晶体中掺入杂质磷(P)元素的概要图。磷原子持有的5个价电子中4个和硅(Si)原子一样,通过共价键,与邻接原子紧密结合。剩下1个价电子不发生共价键,而是根据室温高低成为自由电子。这个自由电子将旁边的价电子赶出,取代它的位置,而原有价电子变为自由电子,再将旁边的其他价电子赶出。通过这样的重复过程,使自由电子不断移动从而形成电流。由电子作为载流子(输送电流)的半导体称为“N型半导体”。施主原子的电子不足时,带正电荷。

图1N型半导体结构

(2) P型半导体

图2是在硅晶体中掺入杂质硼元素的概要图。硼元素具有3个价电子,与硅相比少1个价电子。邻接硅原子中的价电子通过微量热能变为自由电子,被受主原子吸收。被吸收的价电子的原有位置称为空穴,进一步吸收邻接硅原子中的价电子。通过这个重复过程,空穴移动,产生电流。由空穴作为载流子的半导体称为“P型半导体”。受主原子的电子过多,因而带负电荷。

图2P型半导体结构

二极管为单向传导的电子器件

二极管是由P型半导体和N型半导体形成的,构造简单。P型和N型结界面周围,各个载流子扩散并结合,从而出现了不存在载流子的区域。在这个区域里,带电的杂质形成势垒电场,通过阻止载流子扩散阻碍结合。我们将这个不存在载流子的势垒电场称为耗尽层。

图3PN结二极管的结构

在二极管的两端,P型区域外加正电压,N型区外加负电压,向耗尽层变窄的方向上加入能量,则载流子极易向两边漂移,再次产生复合,因复合而消失的载流子被外加电压的电流补给,形成定向电流。与此相反,当在P型区域外加负电压,N型区外加正电压时,向载流子被电极吸引的方向上加入能量,则耗尽层变宽,电流几乎不再流动。上述电流单向流动即为二极管的基本原理—整流作用。易于电流流动的方向称为正向,不易电流流动的方向称为反向。

二极管的电压电流特性

二极管的电压电流特性如图4所示。需要注意的是,即使是正向,如不外加一定程度电压,电流还是不会流动的。硅二极管所需外加电压为0.7~0.8V,肖特基二极管约为0.2V,发光二极管(LED)为2~5V以上,能让电流正向流动。在反向上外加一定电压时,也可突然产生电流,这种现象称之为击穿。击穿电压几乎不受电流影响,因此常用做定电压源。

图4二极管的电压电流特性

电子电路的基本元件(最早投入使用的固体有源元件)

晶体管(为避免与下文中的FET产生混淆,也可称之为双极型晶体管)是P型半导体和N型半导体相互叠加,呈三明治夹层构造的元件。根据叠加顺序不同,可分为NPN型和PNP型两类。

图5NPN晶体管概要图

以NPN型晶体管(图5)为例,我们来看一下工作原理。

基区?发射区和二极管结构相同。在此外加正向电压(0.7V左右)产生基极电流(IB)。大量自由电子从发射区流入基区,基区复合的载流子少于发射区扩散出来的,则自由电子剩余。剩余自由电子被集电极上外加的E2吸引。发射区扩散的载流子数量为复合载流子数量的10~数百倍,用此比率扩大IB,产生集电极电流(IC)。如IB为0时,发射区无载流子扩散,则IC也为0。也就是说,基区?发射区之间的正向电流IB可以控制基区?发射区之间的电流IC。这种特性适用于放大器和开关,构成电子电路的基本元件。通过组合这种晶体管可形成较为复杂的电子电路。

晶体管的开关工作

晶体管可得到大于基极电流几倍的集电极电流。集电极电流与基极电流的比率称之为直流电流放大率(HFE),比率约为100~700。如图6所示电路中,IN上外加电压为0V时,基极无电流,集电极也无电流产生,因此RL无电流通过,OUT上输出电压为12V。相反,在基区?发射区之间外加一定强度电压(一般外加电压0.7V以上电压),则基极有电流通过,产生hFE倍的集电极电流。但实际通过的电流,因负荷电阻RL的存在,(12V-Vce-sat(饱和电压))/RL受到限制。由于该开关电路的驱动电流很大,所以,常常被用在用MCU和逻辑IC等芯片不能直接驱动的控制场合,比如功率LED、继电器和DC电机等的控制。

图6 晶体管的开关工作

实现集成化的贡献者

FET(Filed Effect Transistor:场效应晶体管)大致可分为MOS(Metal Oxide Semiconductor:金属氧化物半导体)和结型两类。特别是MOS型FET(MOSFET),与上述双极型晶体管相比,其平面型结构以及相邻同类元件间干扰极小,基本上无需分离使用,因易于集成化、细微化且低功耗,因此是IC和LSI中必不可少的元件。接下来我们来看看MOS型FET的工作原理。

图7是N型MOSFET概要图。G被称为“栅”极,G下面是作为绝缘体的氧化膜,源极S和漏极D夹住栅极。栅极与源极之间电压为0V时,N型半导体构成的源极和漏极之间夹入P型半导体,形成反向结合,形成绝缘。也就是说,源极和漏极之间无电流通过。

当在栅极上外加电压时,自由电子被吸引到栅极下方。源极和漏极之间自由电子增多,电流容易通过。也就是说,可以通过向栅极外加电压,来控制源漏极之间的电流。

其主要被用于开关电路及放大电路。当栅极上外加的电压稳定不变时,源漏极间电流也稳定,因此可用作定电压源。

栅极下面的电流通道为N型时称为N型MOSFET,栅极下面的电流通道为P型时P型MOSFET。

图7N型MOSFET概要图

数字电路的基本要素CMOS

CMOS(ComplementaryMOS)如图8所示,是一种互补型连接的MOSFET。采用此种电路结构时,无论是IN电压为0V,还是VCC的情况,只有一方的MOSFET为ON。因此从VCC到GND基本上无电流通过,可用于构成功耗极低的理想电路。现在的LSI和IC基本上都是由这种CMOS构成的。

图8CMOS构成的变频器

2次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭