当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]Intel80C196MC微处理器在静止逆变电源中的应用

摘要:简要介绍采用80C196MC单片机研制的三相静止逆变电源电路硬件、软件设计方案。试验结果表明,这一方案能够满足应用要求。

关键词:正弦脉宽调制静止逆变电源

The Application of Intel 80C196MC Microprocessor

in Static? inverter Power Supply

Abstract: This paper presents a design precept of static? inverter power supply using Intel 80C196MC microprocessor and shows the circuit block and the programming idea. The experimental results show that this precept can meet the requirements of the application.

Keywords: SPWM, Static? inverter, Power Supply

中图法分类号:TM92文献标识码:A文章编号:0219?2713(2000)08?401?04

1引言

PWM(脉宽调制)技术是利用半导体开关器件的导通与关断把直流电压变成电压脉冲列,并通过控制电压脉冲宽度以达到变压变频目的的一种控制技术。SPWM(正弦脉宽调制)是由控制回路产生一组等幅而不等宽的矩形脉冲列,用来近似正弦电压波。

常采用的方法有3种:一是完全由模拟电路生成;二是由数字电路生成;三是由专用集成芯片生成。模拟方法电路复杂,硬件太多,抗干扰性能差,有温漂现象,难以实现最优化PWM控制(最优化PWM的调制波都不是正弦波),系统可靠性低;数字方法按照不同的数字模型用计算机算出各切换点,将其存入内存,然后通过查表及必要的计算产生SPWM波,该方法调频范围不宽。输出的PWM波1/4轴不对称,会产生偶次谐波,低频区尤其严重,且占用内存大,与系统精度之间存在矛盾;由专用集成芯片生成三相SPWM波的技术近年来被广泛采用,常用的有HEF4752,SLE4520,MA818,MA828,MA838和MITET公司研制的三相、单相PWM产生器SA828,SA838系列芯片。它们多与微处理器连接,完成外围控制功能,但在系统构成上仍然较复杂。而INTEL公司近期推出的16位微处理器80C196MC,片内集成了一个3相波形发生器WFG(WaveFormGenerator),这一外设装置大大简化了产生同步脉宽调制波形的控制软件和外部硬件,可构成最小单片机系统同时协调完成SPWM波形生成和整个系统的检测、保护、智能控制等。基于上述原因,本文采用80C196MC来构成静止逆变电源的控制电路。

280C196MC片内波形发生器WFG简介

2.1WFG功能特点

80C196MC片内WFG有3个同步的PWM模块,每个模块包含一个相位比较寄存器、一个无信号时间(deadtime)发生器和一对可编程的输出。WFG可产生独立的3对PWM波形,但它们有共同的载波频率、无信号时间和操作方式。一旦起动以后,WFG只要求CPU在改变PWM的占空比时加以干预。

WFG产生SPWM波形是在下列专用寄存器的控制下完成的。

(1)双向计数寄存器WG-COUNT:16位双向计数器,是产生输出信号的时基发生器。每个状态周期WG-COUNT改变一个计数值。用户可对WG-RELOAD寄存器进行写操作,而它的值周期地装入到计数器中。

(2)重装载寄存器WG-RELOAD:该寄存器实际包含一对16位寄存器,当读或写该寄存器时,访问的是WG-RELOAD寄存器。写到WG-RELOAD的值,被周期地(取决于操作方式)装入到第二个寄存器。这后一个寄存器叫做计数器比较寄存器,它是WG-COUNT实际与之比较的时间寄存器。

(3)相位比较寄存器WG-COMPx:共有3个(X=1,2,3)可读写的16位相位比较缓冲器。每一个相位比较缓冲器有一个关联的比较寄存器,它的值与每次计数后的WG-COUNT相比较。

(4)控制寄存器WG-CON:WG-CON是一个16位寄存器。可控制计数方式及产生3个10位无信号时间(deadtime)。

(5)输出控制缓冲寄存器WG-OUT:可用于选择输出引脚的输出信号方式。可对每个引脚独立定义有效状态。

2.2WFG的基本工作原理

(1)WFG由时基发生器、相位驱动通道和控制回路组成:

①时基发生器为SPWM建立载波周期。该周期值取决于WG-RELOAD的值;

②相位驱动通道决定SPWM波形的占空比,可编程输出,每个相位驱动器包含一个可编程的无信号时间发生器;

③控制电路用来确定工作模式和其它寄存器配置信息。

(2)时基发生器WG-COUNT有4种工作方式。当选通波形发生器工作时,根据所选择的工作方式,作为时基发生器的WG-COUNT连续向上计数或向上/向下计数,每次计数时,WG-COUNT内容与计数比较寄存器的值作比较,当二者匹配时,按所选择的工作方式产生相应操作。

中心对准PWM方式中,载波周期Tc=(4×WG-RELOAD)/Fxtal(μs)

不考虑无信号时间,输出“有效”的时间Toutput=(4×WG-COMPx)/Fxtal(μs)。不考虑无信号时间,

  占空比=(WG?COMPx/WG?RELOAD)×100%

式中WG?RELOAD——16位值;

Fxtal——XTAL1引脚上晶振频率,MHz;[!--empirenews.page--]

WG-COMPx——16位值,等于或小于WG-RELOAD。

边沿对准PWM方式,载波周期Tc=(2×WG-RELOAD)/Fxtal(μs)

不考虑无信号时间,输出“有效”的时间Toutput=(2×WG-COMPx)/Fxtal(μs)

不考虑无信号时间,占空比=(WG-COMPx/WG-RELOAD)×100%

由上式可知,WG-COMPx值的变化,改变了PWM波的占空比。而SPWM波形的产生正是由储存的正弦函数数据值经计算后赋给WG-COMPx,每一次中断都赋给WG-COMPx一个随正弦规律变化的值,从而产生一系列脉宽不等的脉冲列来近似正弦波。

(3)WFG的中断

与波形发生器有关的2种中断:WFG中断和EXTINT中断。

WFG中断是重装载WG-COUNT时产生。不同的工作方式,有不同的重装载方式,每个PWM周期,方式0在WG-COUNT=WG-RELOAD时产生一次WFG中断,方式1在WG-COUNT=WG-RELOAD和WG-COUNT=1时都产生中断。

EXTINT中断由保护电路产生。可编程设置产生中断的方式,在整个系统检测过流信号,保护电力电子开关器件。

3逆变电源硬件电路

静止逆变电源的硬件结构如图1所示,它主要由下列几个部分组成。

3.1主电路

它的形式为AC/DC/AC逆变电路。输入三相交流电压经整流、滤波后供给逆变器。主开关器件选用日本三菱公司2单元IGBT模块CM75DY-24H,加上缓冲电路构成本系统三相逆变电源。输出采用隔离降压变压器。

3.2控制电路

80C196MC微处理器最小系统及少量外围芯片构成本系统控制电路。单片机产生三相6路SPWM信号,同时完成频率显示,闭环稳压限流控制,检测保护,封锁SPWM脉冲信号等功能。

3.3驱动电路

本逆变电源驱动电路采用日本三菱公司为驱动IGBT设计的专用集成电路M57959L,加少许外围元件构成。80C196MC输出SPWM信号可通过驱动模块M57959L直接驱动IGBT管。当M57959L检测到IGBT管上的过流信号时,若持续时间大于2.5μs,则发出故障信号,否则保护电路不动作。故障信号产生EXTINT中断,封锁各路SPWM信号,高速关断IGBT。其典型应用电路如图2所示。

图1系统主电路

图2M57959L典型应用电路 [!--empirenews.page--]

图3软件结构

图480C196MC生成的SPWM信号

图5经M57959L隔离输出的驱动信号

图6输出电压波形

图7频谱分析所得波形

4软件设计软件程序设计是整个逆变电源控制的核心,它决定逆变电源输出的特性,如:电压范围及稳定度,谐波含量,保护功能的完善,可靠性等。稳压限流逆变电源框图如图3所示。

软件设计中,80C196MC初始化命令、控制命令的参数计算及SPWM波形的生成、死区时间等,请参阅参考文献。

输出电压值、电流限流值均由电位器给定,经80C196MC片内A/D通道转换成数字量。电压给定值经运算处理作为调制深度系数,控制M57959L输出SPWM信号。

5实验结果及结论

按照上述硬件电路制作了1台三相8kVA的静止逆变电源。主要参数是三相输入380V,50Hz,三相输出220V,400Hz。取载波频率6.4kHz,死区时间5μs。用SignalView通用信号分析软件采集到隔离前后的调制深度系数M=0.87时的SPWM信号如图4,图5所示。

采用L型滤波(滤波电容15μF,电感0.37mH)后输出电压波形如图6所示(为方便,降压采集).

  以该软件对输出波形进行频谱分析后的波形如图7所示。

用YOKOGAWAModelWT2030DigitalPowerMeter测试仪测得该静止逆变电源的主要技术指标为:

电压稳定度(负载变化100%,输入变化10%)1%;

总谐波含量2.7%;整机效率85%以上。

实验表明,在研制逆变电源过程中,采用了16位单片机80C196MC最小系统后,整个控制电路大大简化,器件减少,结构紧凑,降低了成本,在16位方式下数据处理快,系统反应灵敏,提高了可靠性。通过测试取得了比较理想的结果。同时,只需改变编程软件中的两个数据,该系统可用于单相逆变电源。相信80C196MC微处理器在变频智能控制领域有较好的实用价值和推广前景。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭