当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于FPGA的芯片设计及其应用

过去,半导体行业一直关注的两个目标是缩小体积和提高速率。近 40年来,对这些目标的追求促使行业发展符合摩尔定律,性能和电路密度每18个月翻倍。导致技术高速发展,蕴育了计算机革命、互联网革命以及现在的无线通信革命。但同时也为此付出了代价。一种代价是物理上的。工艺技术上的每一次进步都使得芯片晶体管的“关断”电流增加,也就是待机功耗在增加。另一代价是金钱。每一工艺节点的开发成本呈指数增加。

  在芯片设计FPGA的优势是节约成本

  65nm和后续工艺节点上需要考虑的是合理的资金分配,而ASIC设计方法成本高,预期收益回报较低。设计人员应认真考虑使用现场可编程门阵列(FPGA)。这些器件解决了当今设计人员面临的功耗问题,有较好的ROI。

  FPGA设计的研发成本要比ASIC低几个数量级,开发人员设计FPGA时,不用面对数百万美元的模板成本,不需要在晶体管级单元布局布线上的高级专业技能,也不需要昂贵的自动设计工具和工艺库。

  FPGA的可编程能力还避免了今后大量的研发开支。在产品生命周期中,如果需要在已有设计中加入新功能,对FPGA重新进行编程便可以简单地实现功能改进。而对ASIC设计进行微小的改动也需要在新模板上投入大量人力物力。

  认识到可编程优点的开发人员可能会考虑基于处理器的ASIC设计方法。在这一方面,FPGA同样具有优势。可编程逻辑在实现功能上效率要比软件高得多,和基于处理器的设计相比,不但降低了功耗,而且提高了任务执行速度。在基于处理器的设计中,FGPA的确经常被用作硬件加速器。

  各种客户群大量采用FPGA,使FPGA的产效在消费类设计上和大批量ASIC水平相当。量产也使得FPGA供应商有足够的收益来切实投入研发。结果, FPGA在体系结构、设计和工艺上是目前最先进的技术,足以和最好的ASIC进行竞争。而且,研发上的投入也保证了FPGA成为功能更强大、质量更好的可靠器件。

  对量产的预测已经得到证实。在过去几年中,FPGA的收益超出了半导体市场的总体水平,而且有加速发展的趋势,原因在于芯片技术的复杂度越来越高,业界大量应用降低了对产品量产的预期。所有因素都对FPGA更加有利,而非ASIC。

  随着半导体技术在65nm上的突破,人们越来越关心功耗和开发成本问题。使用这些技术的芯片物理设计遇到了更多的挑战,ASIC设计方法实现起来更加困难。设计人员转向基于FPGA的设计后,能够从芯片物理设计难题中抽身而出,让FPGA公司去解决这些问题,把精力集中在应用和系统设计的核心能力以及价值定位上。

  基于FPGA的芯片设计方法

  1、基于FPGA的电路设计流程如下:逻辑设计—网表设计—FPGA的初始布局—自动布局—自动布线—产生加载FPGA的配置位图。

  2、基于FPGA的芯片设计的设计方法:

  (1) 选择适当型号的芯片,以提高性能和价格比。

  (2) 逻辑设计中尽可能采用适合于FPGA特性的电路,充分、高效、合理地利用FPGA资源。由于门阵列芯片固有的特点,即资源的数量及种类固定,因此在电路设计中应采用相应的对策,以便扬长避短,充分发挥FPGA芯片的功效,基于以上考虑,以下两点显得尤为必要。一点是充分利用单元库中提供的宏单元,另一点是尽可能地减少逻辑设计中的线网长度和数量,这里所说的线网长度,指的是该线网所连接的逻辑单元的数量的总和。

  (3) 精心布局,以提高整个系统的性能。

  (4) 手工调整布线,充分利用长线资源,确保设计出的芯片满足设计需求。与自动布局一样,自动布线系统布出的线业经常存在着明显的不合理,对布线进行人工干预也是十分必要的。

  (5) 运用自动布局布线工具、布出具有同样功能的多块芯片。

  XILINX基于FPGA的芯片设计整体解决方案

  通过缩短开发产品和将它们推向市场所需的时间,Xilinx 可编程逻辑解决方案能够帮助电子设备制造商将风险降至最低水平。

  您能够以比传统方法(如掩模编程的、固定逻辑门阵列)快得多的速度设计和验证 Xilinx 可编程器件中独特的电路。并且,因为 Xilinx 器件是只需要进行编程的标准产品,所以您无需等待原型,也无需支付大量的非经常性工程(NRE)成本。

  解决方案的软件部分对于每个设计项目的成功而言都是至关重要的。Xilinx 软件解决方案提供了功能强大的工具,从而能够简化利用可编程逻辑进行设计的步骤。按钮设计流程、集成式在线帮助、多媒体辅导资料和高性能自动与自动交互式工具能够帮您获得最佳结果。并且,业界最广泛的可编程逻辑技术和 EDA 集成选项可以提供无可比拟的设计灵活性。

  领先的芯片产品、先进的软件解决方案和世界级的技术支持造就了 Xilinx 解决方案。

  专题阐述

  本专题首先介绍了FPGA在芯片设计领域的优势及这其中的一些关键技术,在举例说明了它的应用特点之后,以XILINX在芯片设计领域的重点产品和整体解决方案做为收尾,使读者从基础理论知识到具体的应用实践都有清晰的了解,同时也对基于FPGA芯片设计过程的认识更加融会贯通。


 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭