当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]MSP430F在ETC中的应用

TI公司的MSP430 单片机产品系列具备16-bit RSIC架构,超低功耗。作为MSP430最新产品序列,F5xxx首次采用0.18um工艺,1MIPs消耗的电流低到了惊人的160uA,主频达到25MIPs 。同时,MSP430F5xxx提供了丰富的片上功能模块,例如,硬件的RTC,12-bit ADC,灵活的时钟系统,硬件CRC16,电源管理模块和多通道的灵活强大的DMA,支持待机模式下的数据交换。

  高速公路不停车收费系统(ETC)介绍

  不停车收费系统(又称电子收费系统Electronic Toll Collection System,简称ETC系统)是利用RFID技术,实现车辆不停车自动收费的智能交通子系统。该系统通过路侧单元RSU(Road Side Unit)与车载电子标签之间OBU(On Board Unit)的专用短程通信,在不需要司机停车和收费人员操作的情况下,自动完成收费处理过程。

  ETC车载单元结构

  

 

  图 1. ETC OBU结构图

  如图一所示,OBU由电池系统,MCU,射频,显示和读卡部分(ESAM卡,CPU卡,射频卡)组成。MCU作为整个系统的中心,负责管理显示,读卡以及与射频部分的数据处理及交换。

  FM0编码方式介绍

  在车辆通过收费站时,OBU和RSU通过5.8G的载波调制,进行高速的数据交换。数据采用HDLC FM0调制。FM0编码遵循以下三个规则:

  A.一个周期内有电平跳变表示”0” ;

  B.一个周期内没有电平跳变表示”1”;

  C.相邻两个周期电平相反。

  数据形式请参考图2

  

 

  图 2. FM0编码方式[!--empirenews.page--]车载电子标签(OBU)对MCU的挑战

 

  车载电子标签系统对MCU有两个挑战 。一是低功耗;二是高速数据通信能力。

  车载电子标签的电池要求有5年以上寿命或者能够支持1万次以上交易。整个系统的低功耗设计成为工程师们的首要任务。其次,RSU对OBU下行数据波特率达到了256Kbps,上行数据波特率512Kbps。由于车辆通行时间非常短,需要OBU对RSU的数据和命令快速响应。而数据包最长能够达到1Kbits,不允许OBU收下整个数据包之后再解码,这要求MCU有实时编解码的能力。

  一般情况下,对FM0的软解码需要得到数据的电平宽度,从而实现解码。通常有两种方式,一种是Timer捕获数据沿,然后软件在中断中判断数据沿之间的宽度。另外一种是定时采样数据口线的电平,通过计数方式得到电平宽度。ETC下行数据速率达到256Kbps,对数据“0”来讲,数据跳变沿之间的宽度只有2uS。对数据“1”来讲,数据沿宽度只有4uS。以第一种方式为例,传统的软解码方式过程如下:

  

 

  图 3. Timer 捕获中断方式

  如图2所示,数据接收过程中,Timer会每2uS或者4uS捕获到一个数据沿,并把数据沿保存到对应寄存器。所以,Timer捕获寄存器里的数据会最快每2uS更新一次。这就需要CPU速度足够快,能够在至少2uS之内完成解码过程。否则,Timer捕获寄存器的数据就会被新的数据覆盖掉,造成解码错误。假设MCU完成1个bit解码的时间需要50个cycle,那么至少需要MCU主频达到25MIPS以上才能实现实时解码。通常,我们会选取主频超过40MIPs的MCU,而这些高速MCU功耗往往难以满足ETC系统的要求。所以,很多ETC生产商采用双MCU的方式,由一颗高速MCU实现FM0实时编解码,另外还有一颗低功耗MCU,通常是MSP430来管理整个系统的功耗。这增加了系统的成本和复杂度。MSP430F5xxx的问世,能够同时满足ETC系统对MCU所有的挑战,解决了客户的困扰。

  用F5xxx 片上DMA和TimerA捕获功能实现FM0实时解码的方法

  MSP430F5xxx卓越的低功耗特性能够满足ETC OBU的低功耗要求。作为MSP430最新产品序列,F5xxx首次采用0.18um工艺,1MIPs消耗的电流低到了惊人的160uA,片上PMM(电源管理模块)让用户能够根据MCU负荷灵活调节核电压,确保功耗最低。另外,具备多种低功耗状态。在典型的LPM3模式下,打开RTC,RAM数据保持的情况下功耗仅为2uA。

  除了卓越的低功耗特性外,MSP430F5xx主频虽然最高只能达到25MIPS,但由于有灵活的多通道DMA,能够与Timer联动,实现数据的自动搬移而不干扰到CPU,这极大的增强了MCU的数据吞吐能力,使主频不再成为瓶颈,而完成对FM0近乎实时的解码。另外,硬件的CRC16模块让MCU只需要操作寄存器就可以完成数据校验。利用DMA和CRC16的实时解码过程如图4所示:

  

 

  图 4. DMA自动数据搬移的解码方式

  数据接收过程中,Timer每2uS或者4uS捕获到一个数据沿,这时会自动触发DMA,DMA自动将Timer寄存器的数据搬移到RAM区的指定数组当中。整个数据接收过程不需要CPU的参与。有了DMA的存在,CPU就不需要频繁的进出中断去取数据,也不用担心Timer捕获寄存器数据的丢失,只需专注于解码过程。

  

 

  图 5. FM0 DMA方式解码图示

  解码过程说明:

  1. 待机状态:TimerA配置成捕获模式,使能TimerA中断,等待数据到来

  2. 捕获到第一个数据沿:在TimerA中断中使能DMA,使能TimerB及TimerB中断

  3. 数据接收:DMA自动将后续的数据沿搬移到内存数组中;同时MCU解码

  4. 数据结束:TimerB判断数据接收结束

  5. 解码结束

  

 

  图 6. 程序流程图[!--empirenews.page--]实测结果:

 

  采用120bytes的数据做FM0解码测试,其中数据位”1”和“0”约各占50%。MSP430F5438完成解码后,通过串口输出数据如图7所示:

  

 

  图 7. 串口接收到的数据

  对上图1Kbits数据,实测MCU完成解码,滞后数据包接收完毕约220uS.如图8所示

  

 

  图 8. 解码实时性

  使用MSP430F5xx SPI及DMA实现FM0编码及发送的办法

  ETC OBU系统MCU上行数据率是512Kbps。通过灵活应用片上DMA及SPI模块,可以方便的完成FM0数据发送

  

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭