当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]手机设计集成的关键—IP模块

模块化IP结构充分考虑了硬件/软件设计、软件应用设计、以及快速原型的需要,因而便于集成和系统的验证。本文以现成的无线SoC设计(如GSM手机)中增加一个复杂的无线功能,即Bluetooth功能的实例来说明这一原理。Bluetooth实例充分体现确切地定义了硬件与软件接口模块化协议的优势,带来了诸多灵活性,且可优化每个组件的成本和功率。

  SoC选择

  目前,市场上有两类产品;单片IC器件和IP内核,它们在即插即用上是等效的。SoC设计者也有两种选择,或连接一个外部IC;或为了降低总系统成本,采用IP内核将Bluetooth功能归入片内。

  Synopsys Designware Blue IQ 是一个可合成的Bluetooth内核,通过标准4线UART(H4)接口连接至主CPU,例如ARM9嵌入式微处理器,管理上层Bluetooth协议载,另一方面,Bluetooth IP内核通过通用 14引脚“Bluetooth RF”接口连接至RF器件,例如Silicon Wave。

  Bluetooth功能在Bluetooth IP内核是完全自给自足的,它的内部基带处理器可以主CPU处下载全部实时Bluetooth 工作程序。对SoC软件组,这类体系结构确保Bluetooth 不会干扰与手机其余部分相关联的任何定时关键的软件,从而简化了Bluetooth 功能的集成。

  手机设计

  

 

  图1是2.5G手机(GSH/GRPS/EDGE)的方框图。一条AMBA总线构成了SoC的骨架,它由高速AHB(高级硬件总线)段和低速APB(高级外设总线)段组成。连接在AMBA结构上有蜂窝分系统以及 RTOS用和控制手机上各种按键和显示屏用低速外设。一个GPS单元也连接在APB上,为手机提供符合新E911/E112要求的位置信息。Bluetooth分系统则是将Bluetooth IP内核连接在APB UART 外设添加到SoC设计的,并由主CPU的Bluetooth 协议栈软件进行控制。

  从硬件集成观点,附加Bluetooth分系统就象手机设计增加一个UART一样简单。从软件集成透视,同样十分简单。Bluetooth规范清晰地定义了协议栈上级与下级之间的边界。定时关键软件程序放置在栈的下层,靠近硬件并远离应用层。上层和下层通过确切定义的API连接的,HCI(主控制器接口)不仅定义了栈上层和下层之间的协议,而且也定义了诸如 UART、RS-323和USB各种标准物理传输协议。这种模块化硬件与软件方案给SoC设计组带来了显著的即插即用好处。[!--empirenews.page--]组建设计组

 

  

 

  图2表示典型的 SoC设计组,它由下属三个小组组成,分别承担不同的工作。 ASIC组负责硬件的实施,在UNIX工作平台上使用各类工具来生成制作SoC 的最终GDSII文件。软件组负责在SoC上运行的软件的实施。设计样机组使用FPGA样机平台(如ARM集成开发系统)将硬件和软件整合在一起,以便在最终GDSII向代工厂发布前验证SoC的功能。

  ASIC组向设计样机组提供手机设计的FPGA文件,在此实例,包括要增加的Bluetooth分系统文件。ASIE组将Bluetooth IP内核配置在手机设计用系统结构(例如语音通道的数量和支持的服务)中,并生成可以下载到Bluetooth开发工具(如:DesignWare BlueIQ Development Kit)的FPGA文件。

  在软件开发早期阶段,ASIC组将Bluetooth RTL代码集成在ASIC设计中,进行合成和模拟,确保它能正确地连接。

  套装工具确保设计成功

  在开发阶段的早期,软件组的绝大部分工作是在PC上完成的。如图2所示,软件组的工程师们将Bluetooth开发套装工具连接至PC的串口,在台式机上精确地执行可设置在最终SoC上的 Bluetooth分系统。该分系统需用到Bluetooth协议栈的上层,以及创建启用手机Bluetooth功能应用软件所必需的应用配置文件。

  Mezoe InteRFace Express工具套件是一套实施Bluetooth配置文件的软件,这一PC基工具可用来生成工作框架应用软件,任意地组合各类Bluetooth配置文件。得到的软件奠定了最终嵌入式SoC应用的基础,让软件工程师在PC上充分地设计嵌入式Bluetooth应用的样机,相对SoC 设计是独立地进行的,当设计完成并纠错后,它能重新定位到主CPU并下载到FPGA样机平台。

  硬件手机

  在 ASIC组和软件组在各自的环境中开发后,最终的硬件和软件映象由样机组传送至FPGA样机平台,在此平台上整合SoC总体设计。有了完全包含在样机平台硬件的完整手机,在设计用磁带输出公布前,样机组使用各种传统的硬件与软件纠错工具来完善并验证SoC。

  设计潮流向着IP形式的高度模块化和高度自给自足分系统发展,这种Bluetooth IP和软件模块体系结构正处于潮流的前沿。随着SoC设计规模的日益扩大并开始汇集性能各异又高度复杂的功能,IP公司要对集成进行全方位的预测。他们在规划产品的体系结构和封装时,要考虑用户易于集成,减少风险的要求,只有IP提供商充分了解ASIC设计组的要求,同时也了解软件开发者的要求以及设计硬件和软件两者样机的要求,IP用户才能真正领略采用商品化Bluetooth IP产品的好处。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭