当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于DSP的安全无线多媒体数字终端

1 系统概述


 

  本设计利用DSP开发板的强大运算能力,实现了多种需要进行大量运算的信息安全算法。实现了开机用户认证、语音保密通信[1][2]、文字信息加密传输、信息隐藏传输[3]、跳频通信[4]、信息安全存储备份、定时锁机和终端销毁,七项安全功能。整个设计基于ICETEK-VC5509-A开发板,系统的硬件部分还外加了无线射频模块nRF24L01[5]、8×8键盘和128×64蓝屏液晶。芯片ZLG7289B[6]用于键盘扫描管理,液晶的驱动采用MEGA16[7]单片机,整个系统不但实现了高质量的保密语音通信,还具有良好的人机交互功能。

  系统利用上电到输入密码时间的不确定性,随机生成用户私钥,通过Diffie-Hellman[8]密钥交换体制(ECC实现)生成会话密钥。为了提高保密通信的安全性和灵活性,系统实现了可供选择4种加密算法AES[9]、RC5[10]、IDEA[11]、KASUMI[12]和可配置参数的LSB[13]信息隐藏算法。我们自主开发实现了USB驱动[14],使得开发板能够和PC机直接通信,这也为信息存储备份提供了便捷。除此之外,系统能够设定自动锁机的时间。


 

  整个系统的信号传输模型如图1-1所示。
 

图1-1 系统传输模型


 

  2 方案设计与比较

  2.1 系统安全方案


  方案一:预置密钥,定期更换密钥,用对称密码体制进行数据加密。PC机通过USB向终端预置密钥,通信时采用预置的密钥进行对称加密。统的安全性在一定程度上依赖于密钥的更新周期,而在实际应用中,缩短密钥的更新周期比较麻烦。

    方案二:密钥交换基于公钥密码体制,数据加密基于对称密码体制。PC机通过USB向终端写入公钥算法的参数。开机后,A、B随机生成自己的私钥,计算得到自己的公钥,并向对方公开自己的公钥。A使用自己的私钥和B的公钥生成会话密钥,B通过自己的私钥和A 的公钥生成会话密钥,且会话密钥相同。通信结束后清除该次生成的私钥、公钥和会话密钥,下次开机则重复上述会话密钥的生成过程。

  方案二的实现较方案一更为复杂。但考虑到方案二的安全性更高,且方案二在保证会话密钥安全性的前提下,有效的缩短了会话密钥的生存期,提高通信的安全性。另外,还可以通过PC机定期更新公钥参数。再加上方案二更适合于无线移动通信,符合我们的设计背景,因此我们采用方案二。

  2.2 语音编码方案

  方案一:采用G.721编码[15][16]。它结合了ADM的差分信号与PCM的二进制码方法,是一种性能较好的波形编码。ADPCM的复杂度较低,编码前后的压缩比为4比1,其主要思想是用差值代替绝对值。


 

  方案二:采用基于码激励线性预测算法的开源语音编解码Speex[17][18]。Speex主要面向Internet上的VoIP(Voice over Internet Protocol)语音通信。其主要设计目标是为了提供高质量和低比特率的语音编码。Speex可以在同一个比特流中对语音信号实现窄带(8kHz)、宽带(16kHz)和超宽带(32kHz)的压缩;压缩比能够达到16比1。Speex虽然有诸多优点,但是Speex编解码算法复杂,运行该算法需要的硬件配置较高。

 

我们所用的射频模块的传输码速率为2Mbps,且信道完全能够保证通信质量,从理论上说,上述2种方案都适用。我们在DSP开发板上实现了speex和G.721的编解码,实际测试发现speex编解码会带来很大的延迟,原因在于speex编解码算法比较复杂。虽然我们已经最大程度的精简了speex算法,比如:将算法的复杂度置为最低、设置编解码质量参数为最低、关闭了VBR变波特率特性、关闭了知觉增强特性和AEC回声消除等特性,都不能解决延迟很大的问题。除此之外,speex编解码需要大量的浮点计算,我们使用的开发板为TIC55XX系列的定点DSP,实现speex编解码耗时较多;再者,speex编/解码所能处理的最小帧长为160个样点,因此,会带给系统很大的延迟。G.721编解码能够实现基本的语音通信,但通信质量一般,再考虑到本系统以语音信号作为信息隐藏的载体,经语音编解码之后不能还原隐藏信息,因此我们最终选用PCM编码。

  4 系统的实现

  4.1 硬件实现

  4.1.1 系统硬件架构


  终端的硬件架构图如图4-1所示,主要由ICETEK—VC5509—A评估板、nRF24L01射频模块、128×64液晶、8×8键盘、MEGA16单片机控制模块组成。
 

图4-1 硬件架构图


 

  4.1.2 射频收发模块

  射频模块采用nRF24L01,其电路图如图4-2所示。



图4-2 射频模块电路图

[!--empirenews.page--]4.1.3 键盘扫描电路

  我们使用键盘扫描管理芯片ZLG7289B[18]来进行键盘的管理。ZLG7289B可同时扫描多达64只按键。其电路图如图4-3所示。

 



图4-3 键盘扫描电路图

 
  4.2 软件实现

  系统的软件设计采用C语言,所有的程序在CCStudio v3.3环境下开发的。软件由主程序和一些子程序构成,子程序主要包括USB驱动程序、键盘扫描程序、液晶驱动程序和射频通信程序。主程序流程图如图4-4所示。



图4-4 主程序流程图



 

  5 特色与创新

  ①60位私钥的ECC算法实现Diffie-Hellman密钥交换

  ②一键即通的语音保密通信

  ③4种加密算法任意选择的保密通信

  ④实现键盘编辑短信并加密传输

  ⑤可配置参数的信息隐藏传输

  ⑥收发机动态协商进行跳频通信

  ⑦实现了USB的驱动,PC机和开发板直接通信

  ⑧蓝色液晶屏幕显示,人机界面友好

  ⑨射频收发模块实现了2.4G的无线通信

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭