当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于嵌入式系统的FFT算法分析及设计方案

 

概述
目前国内有关数字信号处理的教材在讲解快速傅里叶变换(FFT)时,都是以复数FFT为重点,实数FFT算法都是一笔带过,书中给出的具体实现程序多为BASIC或FORTRAN程序并且多数不能真正运行。鉴于目前在许多嵌入式系统中要用到FFT运算,如以DSP为核心的交流采样系统、频谱分析、相关分析等。本人结合自己的实际开发经验,研究了实数的FFT算法并给出具体的C语言函数,读者可以直接应用于自己的系统中。

首先分析实数FFT算法的推导过程,然后给出一种具体实现FFT算法的C语言程序,可以直接应用于需要FFT运算的单片机或DSP等嵌入式系统中。1 倒位序算法分析

  按时间抽取(DIT)的FFT算法通常将原始数据倒位序存储,最后按正常顺序输出结果X(0),X(1),...,X(k),...。假设一开始,数据在数组 float dataR[128]中,我们将下标i表示为(b6b5b4b3b2b1b0)b,倒位序存放就是将原来第i个位置的元素存放到第(b0b1b2b3b4b5b6)b的位置上去.由于C语言的位操作能力很强,可以分别提取出b6、b5、b4、b3、b2、b1、b0,再重新组合成b0、b1、b2、b3、b4、b5、b6,即是倒位序的位置。程序段如下(假设128点FFT):
/* i为原始存放位置,最后得invert_pos为倒位序存放位置 */
 int b0=b1=b2=b3=b4=b5=6=0;
 b0=i&0x01; b1=(i/2)&0x01; b2=(i/4)&0x01;
 b3=(i/8)&0x01; b4=(i/16)&0x01; b5=(i/32)&0x01;
 b6=(i/64)&0x01; /*以上语句提取各比特的0、1值*/
 invert_pos=x0*64+x1*32+x2*16+x3*8+x4*4+x5*2+x6;

  大家可以对比教科书上的倒位序程序,会发现这种算法充分利用了C语言的位操作能力,非常容易理解而且位操作的速度很快。

2 实数蝶形运算算法的推导

  我们首先看一下图1所示的蝶形图。

蝶形公式:
X(K) = X’(K) + X’(K+B)W PN ,
X(K+B) = X’(K) - X’(K+B) W PN
其中W PN= cos(2πP/N)- jsin(2πP/N)。
设 X(K+B) = XR(K+B) + jXI(K+B),
X(K) = XR(K) + jXI(K) ,
有:
XR(K)+jXI(K)= XR’(K)+jXI’(K)+[ XR’(K+B) + jXI’(K+B)]*[ cos(2πP/N)-jsin(2πP/N)];
继续分解得到下列两式:
XR(K)= XR’(K)+ XR’(K+B) cos(2πP/N)+ XI’(K+B) sin (2πP/N) (1)
XI(K)= XI’(K)-XR’(K+B) sin(2πP/N)+XI’(K+B)cos (2πP/N) (2)

  需要注意的是: XR(K)、XR’(K)的存储位置相同,所以经过(1)、(2)后,该位置上的值已经改变,而下面求X(K+B)要用到X’(K),因此在编程时要注意保存XR’(K)和XI’(K)到TR和TI两个临时变量中。

  同理: XR(K+B)+jXI(K+B)= XR’(K)+jXI’(K)- [ XR’(K+B)+jXI’(K+B)] *[ cos(2πP/N)-jsin(2πP/N)]继续分解得到下列两式:
XR(K+B)= XR’(K)-XR’(K+B) cos(2πP/N)- XI’(K+B) sin (2πP/N) (3)
XI(K+B)= XI’(K)+ XR’(K+B) sin(2πP/N)- XI’(K+B) cos (2πP/N) (4)
注意:
  ① 在编程时, 式(3)、(4)中的XR’(K)和 XI’(K)分别用TR和TI代替。

  ② 经过式(3)后, XR(K+B)的值已变化,而式(4)中要用到该位置上的上一级值,所以在执行式(3)前要先将上一级的值XR’(K+B)保存。

  ③ 在编程时, XR(K)和 XR’(K), XI(K)和 XI’(K)使用同一个变量。
  通过以上分析,我们只要将式(1)、(2)、(3)、(4)转换成C语言语句即可。要注意变量的中间保存,详见以下程序段。

/* 蝶形运算程序段 ,dataR[]存放实数部分,dataI[]存放虚部*/
/* cos、sin函数做成表格,直接查表加快运算速度 */
TR=dataR[k]; TI=dataI[k]; temp=dataR[k+b];/*保存变量,供后面语句使用*/
dataR[k]=dataR[k]+dataR[k+b]*cos_tab[p]+dataI[k+b]*sin_tab[p];
dataI[k]=dataI[k]-dataR[k+b]*sin_tab[p]+dataI[k+b]*cos_tab[p];
dataR[k+b]=TR-dataR[k+b]*cos_tab[p]-dataI[k+b]*sin_tab[p];
dataI[k+b]=TI+temp*sin_tab[p]-dataI[k+b]*cos_tab[p];

3 DIT FFT 算法的基本思想分析

  我们知道N点FFT运算可以分成LOGN2 级,每一级都有N/2个碟形。DIT FFT的基本思想是用3层循环完成全部运算(N点FFT)。

  第一层循环:由于N=2m需要m级计算,第一层循环对运算的级数进行控制。

  第二层循环:由于第L级有2L-1个蝶形因子(乘数),第二层循环根据乘数进行控制,保证对于每一个蝶形因子第三层循环要执行一次,这样,第三层循环在第二层循环控制下,每一级要进行2L-1次循环计算。

  第三层循环:由于第L级共有N/2L个群,并且同一级内不同群的乘数分布相同,当第二层循环确定某一乘数后,第三层循环要将本级中每个群中具有这一乘数的蝶形计算一次,即第三层循环每执行完一次要进行N/2L个碟形计算。

  可以得出结论:在每一级中,第三层循环完成N/2L个碟形计算;第二层循环使第三层循环进行 2L-1次,因此,第二层循环完成时,共进行2L-1 *N/2L=N/2个碟形计算。实质是:第二、第三层循环完成了第L级的计算。

  几个要注意的数据:

  ① 在第L级中,每个碟形的两个输入端相距b=2L-1个点。

  ② 同一乘数对应着相邻间隔为2L个点的N/2L个碟形。

  ③ 第L级的2L-1个碟形因子WPN 中的P,可表示为p = j*2m-L,其中j = 0,1,2,...,(2L-1-1)。

  以上对嵌入式系统中的FFT算法进行了分析与研究。读者可以将其算法直接应用到自己的系统中,欢迎来信共同讨论。(Email:xiaowanang@163.net)

  附128点DIT FFT函数:

[!--empirenews.page--]

/* 采样来的数据放在dataR[ ]数组中,运算前dataI[ ]数组初始化为0 */
void FFT(float dataR[],float dataI[])
{int x0,x1,x2,x3,x4,x5,x6;
int L,j,k,b,p;
float TR,TI,temp;
/********** following code invert sequence ************/
for(i=0;i<128;i++)
{ x0=x1=x2=x3=x4=x5=x6=0;
x0=i&0x01; x1=(i/2)&0x01; x2=(i/4)&0x01; x3=(i/8)&0x01;x4=(i/16)&0x01; x5=(i/32)&0x01; x6=(i/64)&0x01;
xx=x0*64+x1*32+x2*16+x3*8+x4*4+x5*2+x6;
dataI[xx]=dataR[i];
}
for(i=0;i<128;i++)
{ dataR[i]=dataI[i]; dataI[i]=0; }
/************** following code FFT *******************/
for(L=1;L<=7;L++) { /* for(1) */
b=1; i=L-1;
while(i>0)
{b=b*2; i--;} /* b= 2^(L-1) */
for(j=0;j<=b-1;j++) /* for (2) */
{ p=1; i=7-L;
while(i>0) /* p=pow(2,7-L)*j; */
{p=p*2; i--;}
p=p*j;
for(k=j;k<128;k=k+2*b) /* for (3) */
{ TR=dataR[k]; TI=dataI[k]; temp=dataR[k+b];
dataR[k]=dataR[k]+dataR[k+b]*cos_tab[p]+dataI[k+b]*sin_tab[p];
dataI[k]=dataI[k]-dataR[k+b]*sin_tab[p]+dataI[k+b]*cos_tab[p];
dataR[k+b]=TR-dataR[k+b]*cos_tab[p]-dataI[k+b]*sin_tab[p];
dataI[k+b]=TI+temp*sin_tab[p]-dataI[k+b]*cos_tab[p];
} /* END for (3) */
} /* END for (2) */
} /* END for (1) */
for(i=0;i<32;i++){ /* 只需要32次以下的谐波进行分析 */
w[i]=sqrt(dataR[i]*dataR[i]+dataI[i]*dataI[i]);
w[i]=w[i]/64;}
w[0]=w[0]/2;
} /* END FFT */

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭