当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]闪速内存硬件接口和程序设计中的关键技术

摘 要: 介绍了闪速内存的使用方法,并给出了单片机与闪速内存接口和程序设计中应注意的关键技术。

关键词: 单片机 闪速内存 公共闪存接口CFI

闪速内存(Flash Memory)以其集成度高、制造成本低、使用方便等诸多优点广泛地应用于办公设备、通信设备、医疗设备、家用电器等领域。利用其信息非易失性和可以在线更新资料参数特性,可将其作为具有一定灵活性的只读存储器使用。

在单片机应用系统中,经常遇到大容量的资料存储问题。闪速内存由于容量大、存储速度快、体积小、功耗低等诸多优点,而成为应用系统中数据存储器的首选。但是,由于单片机的资源有限,而闪速内存的种类和工作方式又千差万别,因而在单片机与闪速内存的接口电路和程序设计中,有许多关键技术问题需要解决。

单片机与闪速内存的接口电路应注意的问题有:

(1)很多单片机的工作电压为+5V,而很多闪速内存却工作在1.8~6V之间,有些闪速内存(Flash Memory)的擦除电压又工作在12V。

(2)8位的单片机很多,而闪速内存很多是16位的。

(3)同一型号的闪速内存由于厂家不同,引脚的定义是不一样的,例如Intel公司的28Foo8BV与AMD公司的29LV008有很多引脚是不一样的。

单片机与闪速内存的程序设计应注意的问题有:

(1)不同厂家的闪速内存使用不同的操作命令集,软件要根据不同厂家的闪速内存使用不同的操作命令集。

(2)很多闪速内存内部存储结构和时间参数是不同的。由于闪速内存内部都是分成不同大小存储块,在对闪速内存进行擦除操作时,软件要根据不同型号的闪速内存调整被擦除存储块的大小等参数。同时,由于不同型号的闪速内存间参数是不同,软件要根据闪速内存的时间参数来调整读写和擦除操作的时间。

针对上面遇到的问题,我们从硬件和软件两个方面来考虑单片机与闪速内存应用系统中应解决的关键技术问题。

1 单片机与闪速内存硬件接口的关键技术

生产闪速内存的半导体公司主要有美国的Intel、AMD公司和日本的Sharp、Fujitsu公司,这四家公司生产的闪速内存的市场占有份额相当大。表1列出了四家公司生产的主要型号的闪速内存的性能指针。

 

从表1中可以看出,不同厂家的闪速内存的工作电压和编程擦除电压是不一样的,同时资料位的长度也是不一样的。由于目前国内应用最广泛的单片机仍然是8位的MCS-51系列单片机,16位的单片机种模拟较少,而且工作电压在低电压(2.7~3.6V)的单片机又是寥寥无几。能否用市场上常见的普通8位单片机来设计一个与大多数闪速内存接口的电路呢?答案是肯定的。我们用普通的8位单片机AT89C52设计了一个与闪速内存TE28F160B3的接口电路,AT89C52是ATMEL公司生产的与MCS-51系列单片机兼容的8位单片机,它内部有一个16K 的E2PROM程序内存,它的工作电压是5V。TE28F160B3是INTEL公司生产的容量为16M位、数据总线宽度为16位的闪存内存,它的工作电压为2.7~3.6V。需要指出的是,虽然TE28F160B3的工作电压为2.7~3.6V,但是其各引脚的最大工作电压范围却在-0.5V~5.0V,各引脚高电平最高工作电压不能超过5.5V,这样就使得我们可以使用AT89C52来设计与TE28F160B3的接口电路。该接口电路如图1所示。

 

由于AT89C52是8位单片机,而TE28F160B3是16位数据总线,我们使用了两片74HC244和两片74HC373来完成8位和16位的资料转换。当AT89C52往TE28F160B3写资料时,首先单片机将高8位资料写入到锁存器74HC373-1中。其中74HC373-1锁存信号W373由译码器GAL16V8输出,然后单片机开始执行对TE28F160B3写资料操作,低8位资料由AT89C52的P0口直接写入TE28F160B3,而锁存在74HC373-1中的高8位资料通过缓冲器74HC244-1写入到TE28F160B3的DQ8~DQ15总线上。当AT89C52从TE28F160B3读数据时,读出的高8位资料先锁存到74HC373-2上,然后通过缓冲器74HC224-2读入到AT89C52中。TE28F160B3的存储容量为16M位,有20根地址线A0~A19,而AT89C52一共才有16根地址线。因此利用AT89C52的地址线A15、A14和A13经译码作为两片74HC244、两片74HC373和TE28F160B3的锁存信号和片选信号。这样地址线只剩下A0~A12,为此利用一片计数器4HC4040作为地址线A13~A19,从而就解决了AT89C52的寻址问题。

TE28F160B3的供电电源Vcc与AT89C52一样,均接+5V直流电源。但是TE28F160B3的编程电压和擦除电压Vpp必须接+12V。

图1的单片机使用了市场上常见的AT89C52,但在设计中我们推荐使用宽电压范围工作的单片机AT89LV52和地址译码器ATF16LV8,这样就可以使用+3V左右的供电电源。

在生产闪速内存的半导体公司Intel、AMD、Sharp和Fujitsu中,Intel和Sharp公司的闪速内存的引脚是一样的,AMD和Fujitsu公司的闪存内存的引脚是一样的。所以Intel和AMD公司的闪速内存是不能互换的,如果要互换必须经过一个接口板进行转接。
 
2 单片机与闪速内存程序设计的关键技术

由于生产闪速内存的半导体公司众多,即使是同一公司的闪速内存也是型号众多、千差万别。为使程序设计尽可能地适用于大多数的闪速内存,需注意以下几个关键技术。

2.1器件自动识别

器件自动识别要识别出器件使用的命令集、内部数组结构参数、电气和时间参数及器件所支持的功能。器件自动识别的方法有两种:如果闪速内存支持CFI功能,可以直接通过CFI获得器件的各种参数;如果闪速内存不支持CFI功能,可以写器件识别命令,然后从器件中读取产品的生产厂家和器件代码,根据生产厂家和器件代码从程序中建立的器件参数表中读取器件的各种参数。器件自动识别的流程图如图2所示。

 

正确识别器件之后,就可以根据器件的命令集对器件进行各种操作。对闪速内存的所有操作都是通过芯片的命令用户接口CUI实现的。通过CUI写入不同的控制命令,闪速内存就从一个工作状态转移到另一个工作状态。其主要的工作状态是:读存储单元操作、擦除操作和编程操作。

2.2 读存储单元操作
在闪速内存芯片上电以后,芯片就处于读存储单元状态,也可以通过写入复位命令进入读存储单元状态,读存储单元的操作与SRAM相同。

2.3 擦除操作
在对闪速内存芯片编程操作前,必须保证存储单元为空。如果不空,必须对闪速内存芯片进行擦除操作。由于闪速内存采用模块分区的数组结构, 使得各个存储模块可以被独立地擦除。当给出的地址是在模块地址范围之内且向命令用户接口写入模块擦除命令时,相应的模块就被擦除。要保证擦除操作的正确完成,必须考虑以下几个参数:(1)该闪速内存芯片的内部模块分区结构。(2)擦除电压Vpp。(3)整片擦除时间和每个模块分区的擦除时间参数。上面三个参数在器件识别中获得。

2.4 编程操作
闪速内存芯片的编程操作是自动字节编程,既可以顺序写入,也可指定地址写入。编程操作时注意芯片的编程电压Vpp和编程时间参数,这两个参数也可以在器件识别中获得。

上面,我们给出了单片机与闪速内存硬件接口电路和软件编程设计中应注意的关键技术问题。硬件上主要考虑芯片的工作电压和编程电压,软件上要考虑到器件的内部结构、使用命令集和时间参数等因素。随着闪速内存器件朝着容量越来越大、工作电压越来越低、支持共同的接口标准的方向发展,将会使闪速内存硬件接口和软件编程设计越来越容易,也会使闪速内存的应用更加广泛。
 
参考文献
1 Intel Products CD-ROM. Intel公司,1998.5
2 何立民. MCS-51系列单片机应用系统设计-系统配
置与接口技术.北京:北京航空航天大学出版社?1990
3 窦振中.单片机外围器件实用手册-内存分册.北京:
北京航空航天大学出版社?1998

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭