当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于FPGA和单片机的串行通信接口设计

摘要:本文针对由FPGA构成的高速数据采集系统数据处理能力弱的问题,提出FPGA与单片机实现数据串行通信的解决方案。在通信过程中完全遵守RS232协议,具有较强的通用性和推广价值。

1 前言
    现场可编程逻辑器件(FPGA)在高速采集系统中的应用越来越广,由于FPGA对采集到的数据的处理能力比较差,故需要将其采集到的数据送到其他CPU系统来实现数据的处理功能,这就使FPGA系统与其他CPU系统之间的数据通信提到日程上,得到人们的急切关注。本文介绍利用VHDL语言实现 FPGA与单片机的串口异步通信电路。
    整个设计采用模块化的设计思想,可分为四个模块:FPGA数据发送模块,FPGA波特率发生控制模块,FPGA总体接口模块以及单片机数据接收模块。本文着重对FPGA数据发送模块实现进行说明。

2  FPGA数据发送模块的设计
    根据RS232 异步串行通信来的帧格式,在FPGA发送模块中采用的每一帧格式为:1位开始位+8位数据位+1位奇校验位+1位停止位,波特率为2400。本系统设计的是将一个16位的数据封装成高位帧和低位帧两个帧进行发送,先发送低位帧,再发送高位帧,在传输数据时,加上文件头和数据长度,文件头用555555来表示,只有单片机收到555555时,才将下面传输的数据长度和数据位进行接收,并进行奇校验位的检验,正确就对收到的数据进行存储处理功能,数据长度可以根据需要任意改变。由设置的波特率可以算出分频系数,具体算法为分频系数X=CLK/(BOUND*2)。可由此式算出所需的任意波特率。下面是实现上述功能的VHDL源程序。
Library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity atel2_bin is
port( txclk: in std_logic;                      --2400Hz的波特率时钟
      reset: in std_logic;                      --复位信号
        din: in std_logic_vector(15 downto 0);  --发送的数据
      start: in std_logic;                      --允许传输信号
       sout: out std_logic                      --串行输出端口
          );
end atel2_bin;
architecture behav of atel2_bin is
signal thr,len: std_logic_vector(15 downto 0);
signal txcnt_r: std_logic_vector(2 downto 0);
signal sout1: std_logic;
signal cou: integer:=0;
signal oddb:std_logic;
type s is(start1,start2,shift1,shift2,odd1,odd2,stop1,stop2);
signal state:s:=start1;  
begin
  process(txclk)     
    begin
      if rising_edge(txclk) then
           if cou<3 then thr<="0000000001010101";       --发送的文件头
            elsif cou=3 then
            thr<="0000000000000010";                --发送的文件长度
            elsif (cou>3 and state=stop2) then thr<=din;--发送的数据
            end if;  
      end if;
  end process;
  process(reset,txclk)
  variable tsr,tsr1,oddb1,oddb2: std_logic_vector(7 downto 0);
   begin
         if reset=‘1‘ then
            txcnt_r<=(others=>‘0‘);
                 sout1<=‘1‘;
                    state<=start1;                    
                       cou<=0;
         elsif txclk‘event and txclk=‘1‘ then                 
         case state is
         when start1=>
              if start=‘1‘ then            
                 if cou=3 then
                    len<=thr;
                 end if;
                 tsr:=thr(7 downto 0);
     oddb1:=thr(7 downto 0); 
                 sout1<=‘0‘; --起始位 
                 txcnt_r<=(others=>‘0‘);   
                 state<=shift1;
              else
                 state<=start1;
              end if;
         when shift1=>
              oddb<=oddb1(7) xor oddb1(6) xor oddb1(5) xor oddb1(4) xor oddb1(3) xor oddb1(2) xor oddb1(1) xor oddb1(0);
              sout1<=tsr(0); --数据位
              tsr(6 downto 0):=tsr(7 downto 1);
              tsr(7):=‘0‘;
              txcnt_r<=txcnt_r+1;
              if (txcnt_r=7) then
                 state<=odd1;cou<=cou+1;
              end if;
         when odd1=>         --奇校验位
              if oddb=‘1‘ then
                 sout1<=‘0‘;state<=stop1;
              else
                 sout1<=‘1‘;state<=stop1;
              end if;
         when stop1=>
              sout1<=‘1‘;    --停止位
              if cou<4 then
                 state<=start1;
              else
                 state<=start2;                             
              end if;
         when start2=>
              tsr1:=thr(15 downto 8);
     oddb2:=thr(15 downto 8); 
              sout1<=‘0‘;    --起始位  
              txcnt_r<=(others=>‘0‘); 
              state<=shift2;
         when shift2=>
              oddb<=oddb2(7) xor oddb2(6) xor oddb2(5) xor oddb2(4) xor oddb2(3) xor oddb2(2) xor oddb2(1) xor oddb2(0);
              sout1<=tsr1(0);--数据位
              tsr1(6 downto 0):=tsr1(7 downto 1);
              tsr1(7):=‘0‘;
              txcnt_r<=txcnt_r+1; 
              if (txcnt_r=7) then
                 state<=odd2;               
              end if;
         when odd2=>       --奇校验位[!--empirenews.page--]
 if oddb=‘1‘ then
                 sout1<=‘0‘;state<=stop2;
              else
                 sout1<=‘1‘;state<=stop2;
              end if;
         when stop2=>  
              sout1<=‘1‘;    --停止位    
              if len="0000000000000000" then
                 state<=stop2;                 
              else
                 state<=start1;               
                 len<=len-1;
              end if;                        
         end case;
         end if;                
   end process; 
  sout<=sout1;
end behav;
其中各信号的说明已在程序中标明了。波形仿真图如图2所示。
 
图2  FPGA数据发送时序仿真图
    图中Din写入值为3355H,波特率为2400Hz,Start信号始终置逻辑1,即随时都能发送数据。Reset信号逻辑1时复位,逻辑0时电路开始工作。THR是数据寄存器,文件头、数据长度以及数据位都先寄存到THR中,Len是数据长度,TSR是低8位数据帧寄存器,TSR1是高8位数据帧寄存器。数据长度Len定为02H,发送时先发送低8位55H,后发送高8位33H,一共发送两遍。发送的数据格式说明:当发送55H时,其二进制为01010101,则发送的数据的二进制数为00101010111(1位开始位+8位数据位+1位奇校验位+1位停止位)。
    单片机部分先对FPGA发送过来的文件头进行确认,正确就接收文件,否则放弃接收的数据。根据FPGA发送模块的协议,对串口控制寄存器SCON和波特率控制寄存器PCON的设置即可实现。

 

3 总结
    目前电子产品的开发中经常要综合运用EDA技术、计算机控制技术、数字信号处理技术,那么电路各部分经常需要数据交换。本文也是基于此给出这方面应用的实例,供开发者交流。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭