当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]基于ARM与低成本MEMS器件的AHRS设计

引言

航向姿态参考系统(Attitude and Heading Reference System,AHRS)能够提供航向、横滚和侧翻等姿态信息,机械陀螺仪及光纤陀螺仪等高精度惯性导航器件价格昂贵,难以得到推广。目前MEMS传感器在消费类电子产品中得到广泛应用,但是MEMS角速率陀螺仪存在严重的零点漂移和随机误差,在捷联惯性导航解算中会产生积分误差,难以达到应用的精度。加速度计和磁场计能分别测量出重力加速度和地磁场这两个不相关的三维矢量,可以作为平台姿态的观测矢量来校准陀螺仪。扩展卡尔曼滤波可以结合这几种传感器的特点,以陀螺仪测量得到的角速率作预测更新,以重力加速度和磁场观测更新,得到更高精度的姿态角信息。

1 硬件结构

MEMS器件的AHRS硬件基本组成为三轴角速率陀螺仪、三轴加速度计、三轴磁阻传感器和STM32系列微处理器STM32F103U8T6。航向姿态参考系统的硬件结构如图1所示。

IMU采用整合了16位的三轴陀螺仪和三轴加速度计的MPU6000,与多组件方案相比,有效避免了组合陀螺仪与加速器时之轴间安装误差的问题,节省了安装空间。同时,内部自带了16位A/D转换器,简化了电路设计。MPU6000的角速率量程为±250 °/s、±500 °/s、±1000 °/s与±2000 °/s。加速度测量范围为±2g、±4g、±8g与±16g。内部自带16位的数字温度传感器,方便对传感器进行温度补偿。数据可通过最高可达400 kHz的I2C总线或最高可达20 MHz的SPI接口传输,采样更新速率达到8 kHz,可保证系统测量的实时性。

图1 航向姿态参考系统的硬件结构

霍尼韦尔HMC5883为三轴12位I2C总线数字量输出磁阻传感器,测量范围为±1~±8 Gs,数据更新速率为80 Hz。内置OFFSET/SET/RESET电路,不会出现磁饱和与累加误差现象,支持自动校准程序,简化使用步骤,可以满足地磁场的测量要求。选用基于CortexM3内核的STM32系列ARM处理器STM32F103U8T6,主频达72 MHz,1.25 DMIPS/MHz;具有硬件单周期乘法器,保证姿态更新的实时性;具有丰富外设接口,可采用I2C总线接口从传感器中读取数据,通过串口与上位机进行通信。

2 四维扩展卡尔曼滤波算法

扩展卡尔曼滤波算法(Extended Kalman Filter, EKF)是一套由计算机实现的实时递推算法,所处理的对象是随机信号,利用系统噪声和观测噪声的统计特性,以系统的观测量作为滤波器的输入,以所要求的估计值(系统的状态变量)作为滤波器的输出,滤波器的输入和输出由时间更新和观测更新算法联系在一起,根据系统的状态方程和观测方程估算出所需要处理的信号。AHRS扩展卡尔曼滤波算法的状态变量采用四维四元数,与采用欧拉角相比,避免了采用欧拉角计算时涉及的大量三角函数运算,保证了更新速率和实时性,同时不存在采用欧拉角运算出现的奇异性。欧拉角与四元数的转换关系如式(1)~(3)所示。

四元数微分方程如式(4)所示,四元数姿态矩阵微分

方程只要解4个微分方程,比方向余弦姿态矩阵微分方程减少了大量的运算,便于微处理器的编程实现。

2.1 时间更新

系统的状态方程如式(5)所示。

其中状态变量为四元数X=[q0,q1,q2,q3]T,Wk-1为四维过程噪声。矩阵A可以根据陀螺仪测得的三轴角速率[ωX,ωY,ωZ]T得到,如式(6)所示。其中Δt为两次时间预测更新所流逝的时间。

状态变量的时间更新如式(7)所示。

协方差矩阵P预测如式(8)所示,式中Q为四维过程激励噪声协方差。

2.2 观测更新

AHRS的观测更新是通过本体坐标系上的重力加速度和地磁场的参考矢量旋转至导航坐标系上,再与加速度和磁场传感器比较,得到观测变量的残余。由本体系转换至导航系的转移矩阵由四元数可以表示为式(9)。

三维参考向量v转移至导航系中可由观测方程式(10)表示。

当重力加速度观测更新时参考向量v等于重力加速度参考矢量(可设置为当平台静止水平放置时,加速度计测量得到的三维矢量为:

当磁场观测更新时v等于磁场参考矢量(可设置为当平台静止水平放置且航向指向正北时,磁阻计测量得到的三维矢量为:

H是h对X求偏导的雅可比矩阵,如式(11)所示。

卡尔曼增益矩阵Kk如式(12)所示,式中R阵为三维观测噪声协方差矩阵。

观测更新:

当重力加速度观测更新时zk为加速度,传感器测量得到的三维矢量zk=[aXaYaZ]T,当磁场观测更新时zk为磁阻传感器,测量得到的三维矢量zk=[mXmYmZ]T。协方差更新:

3 程序结构

AHRS的软件设计主要分为:

① 传感器初始化,包括设置传感器的更新速率、量程。

② 初始化卡尔曼滤波的相关矩阵,根据传感器的特点设置过程激励噪声协方差矩阵Q,设为对角元素为0.1的四维对角方阵。

③ 若成功读取陀螺仪数据,进行卡尔曼滤波的时间更新。

④ 采集加速度传感器和磁阻传感器的数据,若读取成功则进行观测更新。加速度观测更新与磁场观测更新算法差别在于观测方差的R,可根据两种传感器的置信度设置相应的值,航向姿态参考系的程序流程如图2所示。[!--empirenews.page--]

图2 航向姿态参考系的程序流程

4 传感器校准

4.1 陀螺仪温度补偿

低成本MEMS陀螺仪存在着较大的零点偏移,一般可以达到1~3 °/s。可以通过增加扩展卡尔曼滤波的状态变量的维数,即增加三维陀螺零偏做数据融合得以解决。优点是可以动态地估计陀螺的零偏,有较强的适应能力,缺点是卡尔曼滤波算法的计算量以维数的三次方增加,因此实时性会有所降低,在要求姿态更新速率高而单片机计算性能有限的情况下,可以采用温度补偿的方法解决。陀螺仪的零点偏移与传感器温度和温度梯度密切相关。MPU6000陀螺仪温度变化缓慢的情况下,可以认为其温度零点漂移对应此时传感器的温度。

可设温漂曲线为三次多项式BX=At3+Bt2+Ct1+D,通过最小二乘法拟合之后可得到各项系数。经过温度补偿后的陀螺仪曲线如图3所示。

图3 静止时减去温漂后的角速率曲线

4.2 硬磁及非正交度校正

地磁场正常情况下测量到的三维数据在空间上的包络应该是一个标准的圆球。但是磁场计测量出来的数据由于受到外界磁场的影响,加上磁阻传感器各轴的标度因子和非正交度,导致传感器采集到的数据在三维空间内分布的包络面为球心偏移原点的椭球面,磁场裸数据三维分布如图4所示。

图4 磁场裸数据三维分布

椭球面约束方程如式(15)所示。

其中m为传感器测得的三维磁场强度,c为球心偏移的三维向量,U为标度因子及非正交度校矩阵。磁场强度没有实际意义,关心的是传感器测量的地磁三维矢量方向,所以设磁场向量模为1。通过最小二乘法可以计算出U和c。磁场数据校正前后对比如图5所示,左右两图为校正前后数据在XY平面上的投影。

图5 磁场数据校正前后对比

5 实验结果

AHRS放置在与1024线光栅编码器固连的转动平台上,测试俯仰姿态角的测量精度及跟踪性能,AHRS与编码器测量曲线对比如图6所示。

图6 AHRS与编码器测量曲线对比

图中实线为AHRS的测量值,点划线为编码器的测量值。当测试平台以幅度约±10°的幅度摆动时。AHRS与编码器测量数据相比在时间上滞后最大不超过5 ms,峰峰值相差不超过0?3°。

结语

基于四元数扩展卡尔曼滤波算法的AHRS具有更新速率高、实时性好、价格低廉的特点,能够广泛应用于手机、平板电脑等消费类电子产品, 也能满足一些机器人对姿态控制的测量需求。

参考文献

[1] 付梦印,邓志红,闫莉萍.Kalman滤波理论及其在导航系统中的应用[M].2版.北京:科学出版社,2010:1718.

[2] 毛奔,林玉荣.惯性器件测试与建模[M].哈尔滨:哈尔滨工程大学出版社,2007:9394.

[3] 邓正隆.惯性技术[M].哈尔滨:哈尔滨工业大学出版社, 2006:620.

[4] 李建利.新型硅MEMS陀螺仪和角加速度计结构设计及MIMU误差标定补偿[D].北京:北京航空航天大学,2008.

[5] C C Foster, G H Elkaim, UC Santa Cruz. Extension of a twoStep calibration methodology to include nonorthogonal sensor axes[J]. IEEE Transactionson Aerospace and ElectronicSystems, 2008,44(3):10701078.

[6] 张树侠.捷联式惯性导航系统[M].北京:国防工业出版社,1992:1517.

[7] 吴永亮,王田苗,梁建宏.微小型无人机三轴磁强计现场误差校正方法[J].航空学报, 2011, 32(2):330336.

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭