当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]如何提高操作系统的实时性

对于一个好的操作系统,需要兼顾功能强大,用户易用性,可靠性,实时性,可维护性, 很多时候最后的设计是这些要求达成的一个平衡,今天我们讨论如何提高操作系统的实时性

实时分为软实时与硬实时, 软实时要求平均响应时间要小于某一个值,硬实时要求最坏响应时间要小于某一个值,很多应用场景任务的实时要求非常高,比如汽车防抱死系统,差10毫秒就是人命关天,时间就是生命。 电信中主管网络损坏,我们需要在50毫秒之内倒换到备份网络之中,否则可能有成千上万个通话中断, 损失重大, 至于航天系统,实时的重要性要求不言而喻。其他的系统,如手机,太慢了用户感觉肯定不爽,我不希望按接电话键2秒钟都没反应,那样对方可能挂机了。我在华清远见从事讲师工作期间,参加培训的学员经常会聊到系统实时性的话题。

如何提高操作系统的实时性呢。

1. 缩短中断响应时间。几乎所有的实时事件都是通过中断上报的,当中断来临时,我们必须停止当前的一切任务,响应中断,我们把中断分成两部分:上半部分与下半部分,或者快中断部分与慢中断部分。上半部分屏蔽其他中断,处理那些紧急任务,如清除某些寄存器,保存中断现场,给相应进程发送消息等, 其他不太紧急的部分放在下半部分,此时所有中断打开,不影响其他任务的完成。

2. 缩短进程上下文切换时间。当CPU在执行某个任务时,实时任务到来,需要马上执行实时任务,我们不能等到当前任务时间片用完才去执行实时任务,那样黄花菜都凉了,必须在中断来临之时马上能过切换过去,保存当前进程的上下文如寄存器,内存,文件,信号等上下文,恢复实时任务的上下文。保存恢复上下文越快越好,这就要求两个进程的上下文共享的资源越少越好,如每个任务的内存是独立的,甚至寄存器也是独立的,这样互不干扰,切换最快了。

3. 缩短实时进程调度时间。一般进程都是按照优先级调度的,实时进程的优先级当然要比非实时的高, 不同实时进程按紧急度不同优先级也不同,实时进程调度算法最好与非实时部分有所区别,算法复杂度最好是O(1).

4. 缩短进程资源分配等待时间。对于一个多进程操作系统,很多资源是大家共享的,如果实时进程需要某个资源,发现那个资源被别的低优先级进程占用,非要等人家执行完才行,而此低优先级进程级别实在太低,其它的进程趁机抢占了CPU, 导致这个低优先级进程迟迟得不到执行,连累苦了我们的实时进程。这样就造成了优先级的反转, 解决优先级反转也有很多办法:主要有优先级继承与优先级极限两种, 原理都相同:此时迅速提高占有资源的低优先级进程的优先级,使其优先级至少与等待资源的实时进程相同。

5. 以空间换时间,减少资源的延迟分配。减少虚资源的分配, 要给就给实的,甚至可以预分配资源。通常进程创建时得到的内存都是虚的,适用malloc得到的资源也是虚拟内存,真正的内存只有当你读些到这个页时才分配,先产生缺页中断,在缺页中断里调用物理页面分配函数,不过这需要一定的时间,硬实时任务是等不及的,所以开始不能跟他玩虚的,狠狠心,开始就把它需要的物理资源备好,所以如果需要寄存器就不要拿Cache敷衍,

如果需要Cache就不要拿内存敷衍,如果需要内存就不要拿硬盘空间敷衍, 传统的以时间换空间的方法在这儿行不通的。在价格能够承受的情况下,尽量分配多级存贮系统的高速部分。

6. 尽量使操作系统简单,甚至定制,为了实时性,我们不得不牺牲他的其他功能,也减少用户易用性,如去掉图形界面部分,去掉虚拟内存管理,甚至去掉多进程,专注于一个任务效率当然最高, 理论证明,如果有多个实时任务,要保证他们都不会 miss deadline, 流出来的缓冲时间至少要达到30%, 这里还没考虑到上下文切换时间,实际需要的缓冲时间更多。

当前实时操作系统有DOS, Windows mobile, Windows CE, VxWorks, 各种实时Linux, Qnux等。 我国我们的通用操作系统要考虑到实时性,必须在其设计的时候考虑到可裁减性,可配置性,这样到实时场合下,可以很方便的抛弃一切不必要的负担,全身的投入到实时任务之中。而这不是一个简单的要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭