当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]无线图像(视频)传输系统ARM9+Atmega16+OV7620+nrf24l01(二)

下面就介绍下nrf24l01的寄存器配置问题。这里我采用了增强型ShockBurst模式,具有自动前导码生成、CRC校验,并配置为自动应答ACK,这样的好处是可以减轻MCU的负担,减少开发难度。目前还没有实现组网,所以只用了其中的一个通道0,为了更简单的传输,把发送端和接收端的地址都设为同一个。需要注意的就是在启动发送和接收时的延时问题,以及发送完和接收完缓存的清除。在其Datasheet上标注的很清楚,在进入发射模式,CE置高的持续时间至少是10us,而在进入接收模式,CE置高后160us后才会检测空中信号。所以,在编程时要多加注意。我觉得主要的还是发送和接收缓存的清除问题,因为我开始时在发送语句的下一句就写了清除发送缓存的语句,结果。。。一看便知,接收一个数据包后戛然而止。这里的延时也影响整个图像数据发送的时长,我在程序中的延时是0.2ms,所以在发送所有数据时的总延时一算便知,(320*240/32)*0.2ms=480ms,而在ARM端的驱动中使用时钟滴答数jiffies记录了两个中断(接收100个数据包,也就是中端了100次,为了方便显示,100次打印一次)到来时的时刻,差值为50ms左右,这样可以算出一帧图像传输的时间为24*50ms=1.2s,如果再减去采集端发送延时等待的时间便可算出一帧图像数据实际的空中传输时间为720ms,所以在最理想的情况下可以达到1帧/s的传输速率——这个速率对于我这个项目来说还算可以(后面希望优化得到2帧/s)。看看nrf24l01的数据手册,它支持两种传输速率1M和2M,按照理论一帧图像320*240=76800,传输的时间应为76.8ms,差距还是蛮大的(一个数量级啊)。

在采集板上还有一个比较重要的部分,那就是DRAM FIFO模块——摄像头采集速率太快,而且数据量又太大,要是直接传给弱不禁风的单片机,不知道最后能得到几个数据——有待验证,呵呵。所以需要有一个高速缓存(冲)器来解决这个问题,本次采用的是AL422B(别人好像也都是这么用的,Why),3Mbit容量——对本次应用来说足矣。AL422B操作很简单,要特别注意的也就是读写的时序、读写reset、读写使能位的控制。写端/WE由OV7620的HREF和MCU的一个引脚PD4通过与非门控制,而读端直接接地,随时可以读取,而其写时序是由OV7620的PCLK引脚提供时钟,这样就可以保证每个像素值都可以按照顺序写入。当OV7620的VSYNC引脚拉高时表明已经开始采集一帧图像,MCU判断到此值后拉高PD4,之后HREF也会被拉高,这样AL422B的写使能已经有效,在PCLK的时钟下源源不断的写入数据。下面贴出本段相关的代码:

/**************************************/

while( !( PIND & (1<

PORTD |=(1<

enable_int0(); //检测到下降沿表明,一帧图像采集完毕,采用中断方式停止数据写入

delay_ms(20);

/*****************irq ISP****************/

#pragma interrupt_handler int0_isr:iv_INT0

void int0_isr(void)

{

PORTD &=~(1<

disable_int0();

}

最后还要注意一点,AL422B的读写时钟支持的频率范围在1MHz-500MHz(20-2000ns),所以非常好的兼容

PCLK的时钟(将在OV7620章节详述)。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭