当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]Cypress CY8CKIT-025分辨率0.1度C温度测量解决方案

Cypress公司的CY8CKIT-025 PSoC® 精密模拟温度传感器扩展板套件(EBK)包括5个温度传感器,能方便快速测量和控制温度,温度测量分辨率达到0.1度C.CY8CKIT-025 EBK设计和CY8CKIT-030 PSoC 3开发板或CY8CKIT-001 PSoC开发板 一起使用,提供完整的单片温度检测和控制解决方案.本文介绍了PSoC®5: CY8C52系列产品主要特性,功能框图,ARM Cortex-M3框图以及CY8CKIT-025 PSoC® 精密模拟温度传感器扩展板套件(EBK)主要特性,电路图,材料清单和PCB元件布局图.

With its unique array of configurable blocks, PSoC® 5 is a true system-level solution providing microcontroller unit (MCU), memory, analog, and digital peripheral functions in a single chip. The CY8C52 family offers a modern method of signal acquisition, signal processing, and control with high accuracy, high bandwidth, and high flexibility. Analog capability spans the range from thermocouples (near DC voltages) to ultrasonic signals. The CY8C52 family can handle dozens of data acquisition channels and analog inputs on every GPIO pin. The CY8C52 family is also a high-performance configurable digital system with some part numbers including interfaces such as USB and multimaster I2C. In addition to communication interfaces, the CY8C52 family has an easy to configure logic array, flexible routing to all I/O pins, and a high-performance 32-bit ARM® Cortex™-M3 microprocessor core. Designers can easily create system level designs using a rich library of prebuilt components and boolean primitives using PSoC Creator™, a hierarchical schematic design entry tool. The CY8C52 family provides unparalleled opportunities for analog and digital bill of materials integration while easily accommodating last minute design changes through simple firmware updates.

CY8C52主要特性:

 32-bit ARM Cortex-M3 CPU core

 DC to 40 MHz operation

 Flash program memory, up to 256 KB, 100,000 write cycles, 20-year retention and multiple security features

 Up to 64 KB SRAM memory

 128 bytes of cache memory

 2-KB electrically erasable programmable read-only memory (EEPROM) memory, 1 million cycles, and 20 years retention

 24-channel direct memory access (DMA) with multilayer AMBA high-performance bus (AHB) bus access

• Programmable chained descriptors and priorities

• High bandwidth 32-bit transfer support

 Low voltage, ultra low power

 Operating voltage range: 2.7 V to 5.5 V

 6 mA at 6 MHz

 Low power modes including:

• 2-μA sleep mode

• 300-nA hibernate mode with RAM retention

 Versatile I/O system

 46 to 70 I/Os (60 GPIOs, 8 SIOs, 2 USBIOs))

 Any GPIO to any digital or analog peripheral routability

 LCD direct drive from any GPIO, up to 46 × 16 segments

 CapSense® support from any GPIO

 1.2 V to 5.5 V I/O interface voltages, up to four domains

 Maskable, independent IRQ on any pin or port

 Schmitt trigger transistor-transistor logic (TTL) inputs

 All GPIOs configurable as open drain high/low, pull up/down, High-Z, or strong output

 25 mA sink on SIO

 Digital peripherals

 20 to 24 programmable logic device (PLD) based universal digital blocks (UDBs)

 Full-Speed (FS) USB 2.0 12 Mbps using a 24 MHz external oscillator

 Four 16-bit configurable timer, counter, and PWM blocks

 Library of standard peripherals

• 8-, 16-, 24-, and 32-bit timers, counters, and PWMs

• SPI, UART, and I2C

• Many others available in catalog

Library of advanced peripherals

• Cyclic redundancy check (CRC)

• Pseudo random sequence (PRS) generator

• Local interconnect network (LIN) bus 2.0

• Quadrature decoder

Analog peripherals (2.7 V  VDDA  5.5 V)

 1.024 V ±1% internal voltage reference

 Successive approximation register (SAR) analog-to-digital converter (ADC), 12-bit at 700 ksps

 One 8-bit, 5.5-Msps current DAC (IDAC) or 1-Msps voltage DAC (VDAC)

 Two comparators with 95-ns response time

 CapSense support

 Programming, debug, and trace

 Serial wire debug (SWD) and single-wire viewer (SWV) interfaces

 Cortex-M3 flash patch and breakpoint (FPB) block

 Cortex-M3 data watchpoint and trace (DWT) generates data trace information

 Cortex-M3 Instrumentation Trace Macrocell (ITM) can be used for printf-style debugging

 DWT and ITM blocks communicate with off-chip debug and trace systems via the SWV interface

 Bootloader programming supportable through I2C, SPI, UART, USB, and other interfaces[!--empirenews.page--]

 Precision, programmable clocking

 3 to 24 MHz internal oscillator over full temperature and voltage range

 4 to 25 MHz crystal oscillator for crystal PPM accuracy

 Internal PLL clock generation up to 40 MHz

 32.768 kHz watch crystal oscillator

 Low power internal oscillator at 1, 33, and 100 kHz

 Temperature and packaging

 –40℃ to +85℃ degrees industrial temperature

 68-pin QFN and 100-pin TQFP package options

 

 

图1.CY8C52简化方框图:包括

 ARM Cortex-M3 CPU subsystem

 Nonvolatile subsystem

 Programming, debug, and test subsystem

 Inputs and outputs

 Clocking

 Power

 Digital subsystem

 Analog subsystem

 

 

图2.CY8C52中ARM Cortex-M3框图

CY8CKIT-025 PSoC® 精密模拟温度传感器扩展板套件(EBK)

The CY8CKIT-025 PSoC® Precision Analog Temperature Sensor Expansion Board Kit (EBK) includes 5 temperature sensors and examples projects to make temperature sensing and control design quick and easy. This kit enables the designer to measure temperature accurately to a resolution of 0.1℃.

The CY8CKIT-025 EBK is designed for use with the CY8CKIT-030 PSoC 3 Development Kit and the CY8CKIT-001 PSoC Development Kit (all sold separately). Combining CY8CKIT-025 EBK with a development kit provides a complete single chip temperature sensing and control solution.

CY8CKIT-025 EBK包括:

PT100 Class B Resistive Temperature Detector (RTD)

Type K Thermocouple

NTC Thermistor

2 Temperature Diodes (2N3904 transistors)

DS600 IC temperature sensor

Examples projects for temperature sensing measurement, combined temperature and voltage measurement and fan control

Includes a bonus CY8CKIT-012 PSoC Prototyping and Development Expansion Board

Quick Start Guide

Resource CD

温度传感器性能比较表:

 

 

 

 

图3.CY8CKIT-025 PSoC精密模拟温度传感器EBK外形图

 

 

图4.CY8CKIT-025 PSoC精密模拟温度传感器EBK电路图

CY8CKIT-025 PSoC精密模拟温度传感器EBK材料清单:

 

 

 

 

图5.CY8CKIT-025 PSoC精密模拟温度传感器EBK PCB元件布局图

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭