当前位置:首页 > 嵌入式 > 嵌入式教程
[导读]NAND Flash内存设备的读写控制设计

引言
 
  NOR Flash和NAND Flash是现在市场上两种主要的非易失闪存技术。Flash因为具有非易失性及可擦除性,在数码相机、手机、个人数字助理( PDA)、掌上电脑、MP3播放器等手持设备中得到广泛的应用。NAND Flash相对于NOR Flash具有更小的体积、更快的写入速度、更多次的可擦除次数以及更低廉的价格而得到了迅速发展。大容量的NAND Flash特别适合现在数码设备中大数据量的存储携带,可以降低成本,提高性能[1]。

1 系统设计

1.1 NAND Flash和NOR Flash的区别

1.1.1 接口差别

  NOR Flash带有SRAM接口,有足够的地址引脚来寻址,可以直接和CPU相连,CPU可以直接通过地址总线对NOR Flash进行访问,可以很容易地存取其内部的每一个字节。

  NAND Flash器件使用复杂的I/O口来串行地存取数据,只能通过I/O接口发送命令和地址,对NAND Flash内部数据进行访问。各个产品或厂商的方法可能各不相同。8个引脚用来传送控制、地址和数据信息。NAND Flash读/写操作采用512或2 048字节的页。

  NOR Flash是并行访问,NAND Flash是串行访问,所以相对来说,前者的速度更快些。

1.1.2 容量和成本

  NOR Flash的成本相对高,容量相对小,常见的有128 KB、256 KB、1 MB、2 MB等;优点是读写数据时,不容易出错。所以在应用领域方面,NOR Flash比较适合应用于存储少量的代码。 

  NAND Flash的单元尺寸几乎是NOR Flash器件的一半,由于生产过程更为简单,也就相应地降低了价格。容量比较大,由于价格便宜,更适合存储大量的数据。

1.1.3 可靠性和耐用性

  采用Flash介质时一个需要重点考虑的问题是可靠性。对于需要扩展MTBF的系统来说,Flash是非常合适的存储方案。可以从寿命(耐用性)、位交换和坏块处理三个方面来比较NOR Flash和NAND Flash的可靠性。寿命(耐用性)在NAND Flash闪存中每个块的最大擦写次数是一百万次,而NOR Flash的擦写次数是十万次。NAND Flash除了具有10∶1的块擦除周期优势,典型的NAND Flash块尺寸要比NOR器件小8倍,每个NAND Flash块在给定的时间内的删除次数要少一些。

1.1.4 位反转

  NAND Flash和NOR Flash都可能发生比特位反转(但NAND Flash反转的几率远大于NOR Flash),因此这两者都必须进行ECC操作;NAND Flash可能会有坏块(出厂时厂家会对坏块做标记),在使用过程中也还有可能会出现新的坏块,因此NAND Flash驱动必须对坏块进行管理。

  位反转对于用NAND Flash存储多媒体信息时倒不是致命的。当然,如果用本地存储设备来存储操作系统、配置文件或其他敏感信息时,必须使用EDC/ECC系统以确保可靠性。坏块处理NAND Flash器件中的坏块是随机分布的。NAND Flash器件需要对介质进行初始化扫描来发现坏块,并将坏块标记为不可用。 

1.1.5 易于使用

  NAND Flash不能在片内运行程序,而NOR Flash可以。但目前很多CPU都可以在上电时以硬件的方式先将NAND Flash的第一个Block中的内容(一般是程序代码,也许不足一个Block,如2 KB大小)自动拷贝到RAM中,然后再运行。因此,只要CPU支持,NAND Flash也可以当成启动设备。由于需要I/O接口,NAND Flash要复杂得多。各种NAND Flash器件的存取方法因厂家而异。在使用NAND Flash器件时,必须先写入驱动程序,才能继续执行其他操作。

1.2 NAND Flash的存储结构

  大多数的NAND Flash都大同小异,所不同的只是该NAND Flash芯片的容量大小和读写速度等基本特性。

  块Block是NAND Flash的擦除操作的基本/最小单位。页是读写操作的基本单位。

  每一个页,对应还有一块区域,叫做空闲区域/冗余区域,而在Linux系统中,一般叫做OOB(Out Of Band)[2]。这个区域最初基于NAND Flash的硬件特性,数据在读写时候相对容易出错,所以为了保证数据的正确性,必须要有对应的检测和纠错机制,此机制被叫做EDC(Error Detection Code)/ECC(Error Code Correction)。所以设计了多余的区域,用于放置数据的校验值。OOB的读写操作一般是随着页的操作一起完成的,即读写页的时候,对应地就读写了OOB。OOB的主要用途: 标记是否是坏块,存储ECC数据,存储一些和文件系统相关的数据。

1.3 NAND Flash的接口控制设计

  系统中选用的NAND Flash为海力士半导体公司(Hynix)的H27U1G8F2B[3],它是一个1 GB的内存,每页的大小为2 112字节(2048+64备用),每个块的大小为128K+4K备用字节。H27U1G8F2B的8个I/O引脚是地址复用的,这样可以减少引脚数,并方便系统升级,闪存的电源为3?3 V。NAND Flash H27U1G8F2B的接口控制电路如图1所示。

图1 NAND Flash控制电路

  由于NAND Flash只有8个I/O引脚,而且是复用的,既可以传数据,也可以传地址、命令。设计命令锁存使能(Command Latch Enable, CLE) 和 地址锁存使能(Address Latch Enable,ALE),就是先要发一个CLE(或ALE)命令,告诉NAND Flash的控制器一声,下面要传的是命令(或地址)。这样,NAND Flash内部才能根据传入的内容,进行对应的动作。相对于并口的NOR Flash的48或52个引脚来说,大大减小了引脚数目,这样封装后的芯片体积小。同时,减少了芯片接口,使用此芯片的相关的外围电路会更简化,避免了繁琐的硬件连线。

2 软件设计

2.1 NAND Flash的读写控制

  Linux MTD[4]对NAND Flash芯片的读写主要分三部分:

① struct mtd_info中的读写函数,如read、write_oob等,这是MTD原始设备层与Flash硬件层之间的接口。

② struct nand_ecc_ctrl中的读写函数,如read_page_raw、write_page等,主要用来做一些与ECC有关的操作。

③ struct nand_chip中的读写函数,如read_buf、cmdfunc等,与具体的NAND controller相关,就是这部分函数与硬件的交互。

  这三部分读写函数是相互配合着完成对NAND Flash芯片的读写的。首先,MTD上层需要读写NAND Flash芯片时,会调用struct mtd_info中的读写函数;接着,struct mtd_info中的读写函数就会调用struct nand_chip或struct nand_ecc_ctrl中的读写函数;最后,若调用的是struct nand_ecc_ctrl中的读写函数,那么它又会接着调用struct nand_chip中的读写函数。读写相关函数如图2所示。

图2 读写相关函数

2.2 NAND Flash的读页流程

2.2.1 读页时序

  读页流程如图3所示。可以看到如果要实现读一个页的数据,就要发送Read的命令,而且是分两个周期,即分两次发送对应的命令。第一次是00h,第二次是30h,而两次命令中间,需要发送对应的你所要读取的页的地址。 图4为读页时序。[!--empirenews.page--]

图3 读页流程


图4 读页时序

2.2.2 读页主要函数

  NAND Flash读页的主要函数有nand_read、nand_do_read_ops、nand_command_lp、nand_read_page_hwecc、read_buf。MTD上层会调用struct mtd_info中的读page函数,即nand_read函数,然后调用nand_do_read_ops,接着会调用struct nand_chip中的cmdfunc函数。这个cmdfunc函数与具体的NAND controller相关,它的作用是使NAND controller向NAND芯片发出读命令,NAND芯片收到命令后,就会做好准备等待NAND controller下一步的读取。接着nand_read函数又会调用struct nand_ecc_ctrl中的read_page函数,而read_page函数又会调用struct nand_chip中read_buf函数,从而真正把NAND芯片中的数据读取到buffer中。read_buf函数返回后,read_page函数就会对buffer中的数据做一些处理,比如ECC校验。读页主要函数代码如下:

static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { 
  …… 
  while(1) { 
    …… 
    /*先发送对应的读页(read page)的命令*/
    chip?﹥cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); 
    ……
    /*发送完命令,接着去调用read_page函数读取对应的数据*/
    ret=chip?﹥ecc.read_page(mtd, chip, bufpoi); 
    buf+=bytes; 
    …… 
    readlen-=bytes; 
    if(!readlen) 
      break; 
    col=0;/*页内地址对齐*/
    ealpage++;/*页号加1*/
    page=realpage & chip?﹥pagemask; 
    …… 
  } 
  ……


2.3 NAND Flash的写页流程

2.3.1 写页时序


图5 写页时序

  从图5写页时序可以看到,如果要实现写一个页的数据,就要发送Page program的命令,而且是分两个周期,即分两次发送对应的命令。第一次是80h,第二次是10h,而两次命令中间,需要发送对应的要写的页的地址和数据。第3个周期是发送读状态寄存器命令70h, 如果I/O口为低电平,表示数据写入成功,否则失败。写页流程如图6所示。

图6 写页流程

2.3.2 写页主要函数

  以写NAND Flash芯片为例,其写数据的工作过程:首先,MTD上层会调用struct mtd_info中的写page函数,即nand_write函数,然后调用nand_do_read_ops。接着函数会调用struct nand_chip中cmdfunc函数,这个cmdfunc函数与具体的NAND controller相关,它的作用是使NAND controller向NAND芯片发出写命令,NAND芯片收到命令后,就会做好准备等待NAND controller下一步的读取。接着nand_write函数又会调用struct nand_ecc_ctrl中的write_page函数,而write_page函数又会调用struct nand_chip中write_buf函数,从而真正把数据写到NAND Flash芯片中。

  MTD读取数据的入口是nand_write,然后调用nand_do_write_ops,此函数主体代码如下:
static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops){
  ……
  if (nand_check_wp(mtd))/*检测,写保护*/
    return -EIO;
  ……
  while(1){
    ……
    ret=chip?﹥write_page(mtd, chip, wbuf, page, cached,(ops?﹥mode==MTD_OOB_RAW));/*写页数据*/
    writelen-=bytes;
    if (!writelen)
      break;
    column=0; /*页内地址对齐*/
    buf+=bytes;
    realpage++; /*页号加1*/
    page=realpage & chip?﹥pagemask;
    ……
    }
……
}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

美光 2500 SSD 采用业界领先的 QLC NAND,性能远超竞品

关键字: 数据中心 SSD NAND

据韩联社报道,上周三星电子发布业绩报告显示,随着芯片价格反弹,预计今年第一季度营业利润同比骤增931.25%,为6.6万亿韩元(当前约合人民币354.6亿元),已经超过了2023年全年营业利润6.57万亿韩元。

关键字: 内存 三星

TDK 株式会社(TSE:6762)进一步扩充 Micronas 嵌入式电机控制器系列 HVC 5x,完全集成电机控制器与 HVC-5222D 和 HVC-5422D,以驱动小型有刷(BDC)、无刷(BLDC)或步进电机...

关键字: 嵌入式 电机控制器 内存

Apr. 04, 2024 ---- TrendForce集邦咨询针对403震后各半导体厂动态更新,由于本次地震大多晶圆代工厂都位属在震度四级的区域,加上台湾地区的半导体工厂多以高规格兴建,内部的减震措施都是世界顶尖水平...

关键字: 晶圆代工 内存

2024年3月27日上午,美光西安新封测厂奠基仪式成功召开。

关键字: DRAM NAND 美光 西安 封测

美光坚持多元、平等、包容的企业文化,携手社区推行公益

关键字: 内存 存储 美光

今天,小编将在这篇文章中为大家带来虚拟内存的有关报道,通过阅读这篇文章,大家可以对虚拟内存具备清晰的认识,主要内容如下。

关键字: 内存 虚拟内存

西班牙塞维利亚,2024年3月12日 — Teledyne Technologies旗下公司、全球成像解决方案创新者Teledyne e2v宣布扩展其Flash™ CMOS图像传感器系列,推出Flash 2K LSA,该...

关键字: 图像传感器 Flash 摄像机

在这篇文章中,小编将对虚拟内存的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 内存 虚拟内存
关闭
关闭