当前位置:首页 > 嵌入式 > 嵌入式教程

  由于交通需求的不断增加,有越来越多的环形感应线圈检测器用于交通检测。这些埋设在道路表面下的线圈可以检测到车辆通过时的电磁变化进而精确地算出交通流量。交通流量是交通统计和交通规划的基本数据,通过这些检测结果可以用来计算占用率(表征交通密度),在使用双线圈模式时还可以提供速度、车辆行驶方向、车型分类等数据,这些数据对于交通管理和统计是极为重要的。通常高速公路车辆检测系统由多通道环形检测单元LD4和控制单元CCU组成,本文采用PHILIPS公司最新推出的ARM7内核微处理器LPC2114设计实现了车辆检测系统控制单元部分,并且和5个LD4环形检测器一起构成10通道高速公路车辆检测系统,其原理框图如图1所示。

总体方案设计

  本文设计的控制板系统原理框图如图2所示,以LPC2114为核心控制单元,该芯片是一种支持实时仿真和跟踪的16/32位基于ARM7TDMI-S 内核的CPU。内部集成了4路10 位A/D转换器,两个32位定时器、一个实时时钟和看门狗,多个串行接口,包括两个工业标准的UART、高速和两个SPI总线接口,外部多达46个与TTL电平兼容的通用I/O口,非常适用于作为主控单元。CPLD EPM7128作为微处理器的扩展输入/输出,通过光电耦合和LD4标准定义总线相连,该标准定义的总线基于RS-485总线通信协议。LD4和控制板通过标准总线进行数据交换,控制板每隔10秒扫描并发送一次请求数据的命令,相应LD4通道返回请求数据或者无效信息,ARM处理器对获得的各通道数据进行相应的统计运算处理。每隔用户设定的间隔时间就将统计数据存储于静态RAM,供中心站定时获取,同时,以分钟为单位将统计的数据备份至Flash电子硬盘中。中心站可以通过请求备份数据命令获取相应时间段的数据,并存入数据库。中心站和控制板采用RS-232串口方式通信,利用调制解调器实现远程数据传输。为了解决大容量存储问题,系统使用了三星公司提供的K9F2808来作为电子硬盘,16MB的容量能够存储11天备份数据,并且该电子硬盘能够灵活升级。

LPC2114与电子硬盘的接口实现

  为了防止传输及中心站故障等问题而导致数据丢失,系统要求对一段时间内的数据进行备份,因此在系统设计的过程中需要考虑大容量存储问题。

  设定本系统每分钟需要备份一次统计数据,根据环形检测器LD4的数据格式,一次数据量为1026B,若采用静态RAM作为存储单元,需要多片大容量RAM级联使用,价格昂贵,且存储容量扩展困难。若使用动态RAM作为存储单元,缺点在于控制困难,需要动态RAM控制器辅助操作。Flash作为存储器使用简单,容量大,尽管使用寿命有限,考虑到系统每1分钟存储1026B,就16MB容量而言,11天左右写满一次,那么一个月擦写约3次,以此计算,一年擦写约36次,而Flash寿命一般为擦写10万余次,所以本系统完全可以采用Flash作为电子硬盘用在车辆检测系统中。另外,Flash还具有掉电非易失特性,更适合应用于本系统。

  为了便于存储容量的升级扩展,本系统选用K9F2808作为存储器。K9F2808为48脚表面封装器件,芯片内部有(16M+512K)×8 bit的存储空间,可组成32768行,528列,其中后备的16列的列地址编码为513"527,可进行528字节为一页的读、写和32页为一块的擦除操作。此外,K9F2808的特点还在于其命令、地址和数据信息均通过8条I/O总线传输,接口标准统一,易于存储容量升级。

  图3为LPC2114和Flash电子硬盘之间的连线示意图,由于LPC2114没有外部总线,所以对Flash操作只能采用I/O操作方式。K9F2808各种操作具有共同特点,即在I/O端口首先发送操作命令字到命令寄存器,其后的连续3个周期发送需要操作单元的地址,顺序为:A0"A7,A9"A16,A17"A23,其中A8由命令字确定。

  下面以页编程操作为例,给出K9F2808的ARM驱动程序(基于ADS1.2开发环境),而页读以及块擦除等方法与页编程类似,只是读是由#RE信号来锁存数据,而擦除时只须送两个周期的地址。

  row_add为页号,需要左移9位得到行地址。erase_flash( )——擦除Flash函数

  write_command( )——写命令函数

  write_address( )——写地址函数

  write_data( )——写数据函数

  read_data( )——读数据函数

  void flash_store(uint32 row_add, uint8 *buffer )

  { uint16 i;

  uint32 statue,address;

  //变量定义

  IO0DIR = 0x00ff0000;

  //设定IO方向

  if((row_add== 0) ((row_add%32)==0))

  {address = row_add<<9;

  address &= 0x00fffe00;

  erase_flash(address);}

  //擦除Flash

  write_command(0x80);

  //写命令80H

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭