当前位置:首页 > 嵌入式 > 嵌入式动态
[导读]3D NAND Flash Memory(3D NAND Flash,3D NAND 闪存)的高密度发展正如火如荼地进行着。通过增加存储单元(Memory Cell)在垂直方向上的堆叠(3D堆叠)数量(Word Line的堆叠数),3D NAND闪存的高密度化、大容量化已经基本得以实现。通过融合3D堆叠技术、多值存储技术(在1个存储单元上存储多个bit的技术),获得了具有较大存储容量的Silicon Die(硅芯片)。

3D NAND Flash Memory(3D NAND Flash,3D NAND 闪存)的高密度发展正如火如荼地进行着。通过增加存储单元(Memory Cell)在垂直方向上的堆叠(3D堆叠)数量(Word Line的堆叠数),3D NAND闪存的高密度化、大容量化已经基本得以实现。通过融合3D堆叠技术、多值存储技术(在1个存储单元上存储多个bit的技术),获得了具有较大存储容量的Silicon Die(硅芯片)。

存储容量达到1Tbit以上、较大的3D NAND Flash Memory的开发事例。笔者根据各家公布的数据进行汇总的。(图片出自:pc.watch)

在产品等级中最先进的3D NAND闪存最大可以把1Tbit或者1.33Tbit的庞大数据存储到1颗Silicon Die(硅芯片)上。

比方说,通过融合Samsung Electronics的把Word Line(字线)的堆叠数做到了64层(Intel和Micron Technology通过合作也做到了64层)的技术、1个存储单元上存储了4bit数据的QLC(Quadruple-Level Cell)技术,获得了1Tbit的存储容量。

此外,东芝Memory&Western Digital合作,融合字线的堆叠数做到了96层的技术和QLC技术,开发了达到1.33Tbit这一巨大容量的硅芯片。此处的1.33Tbit,在当今存储半导体业界属于全球最高值!

当前也正在开发Word Line(字线)堆叠数为128的3D NAND 闪存。SK Hynix在2019年6月公布,要通过利用128层的制造技术、每个存储单元上有3bit数据的TLC(Triple-Level Cell)技术,开发单个硅芯片的存储容量为1Tbit的3D NAND闪存。这是TLC技术方面最大的存储容量!

存储容量在过去20年扩到了1,000倍

回望过去,以往的“平面型NAND(Planer NAND,2D NAND)”闪存主要通过微缩技术使存储容量扩大到128Gbit,多值存储方式采用的是MLC(2bit/cell)技术和TLC技术。

3D NAND 闪存技术的实用化以128Gbit为开端,256Gbit以上的存储容量被3D NAND“独霸”!多值存储方式采用的是TLC技术,后来QLC技术也被采用。

▼大容量化的进展

首发的1Tbit超级芯片(#13.1 东芝存储、Western Digital)

NAND闪存的大容量化进展(国际学会ISSCC上公布的硅芯片)。(图片出自:国际学会SSCC执行委员会于2018年11月向媒体公布的资料。)

NAND闪存的存储密度(按照硅的面积来计算的存储容量)在2001年以后,以每年1.41倍的速度增大,相当于3年扩大了4倍的存储容量!令人震惊的是2019年依旧在延续这一增长速度!

▼闪存集成密度的趋势

NAND闪存存储密度的推移(国际学会ISSCC上公布的硅芯片)。(图片出自:国际学会SSCC执行委员会于2018年11月向媒体公布的资料。)

但是,时至今日,担忧3D NAND闪存未来的呼声出现在了存储半导体的研发团体(Community)里。担忧的内容大致分为2类。

其一,至此,牵引存储半导体大容量化的字线层数,在不久的将来其发展会出现“钝化”,或者说其发展会达到极限。其二,QLC方式下的多值存储技术是否会达到极限?存储单元的Bit数是否会出现无法再增加的情况?

Samsung公开谈到300多层的3D NAND闪存

2019年8月6日,大型NAND厂家相继公布了消除以上担忧的Road Map(产品路线图)和技术要素。

今年8月6日,最大的NAND厂商Samsung Electronics公布开始量产SSD,此款SSD搭载了通过单堆栈(Single Stack)形成了136层Memory Through Hole(存储过孔)的256Gbit 3D NAND闪存。所谓136层的Memory Through Hole(存储过孔),在层数方面是历史最高值。除去Source Line、Dummy Word Line,存储单元(Memory Cell Storing)的字线层数为110-120。

此次发布中,应该关注的是他们提到的通过堆叠3个136层的单堆栈(Single Stack),最终可以堆叠300多层的的存储单元(Memory Cell)。最大厂商Samsung表示了如此强势的观点,着实罕见。

虽然还未明确300层的开发时间,不过应该已经着手研发了。

之前东芝Memory 提到过通过Memory Through Hole(存储过孔)技术可能提高字线堆叠数。在2017年5月的国际学会IMW上,东芝提到可以实现200层的2Tbit/Die。2017年5月时间点,3D NAND闪存技术的字线堆叠数最大达到64层!我们迎来了在此基础上增加3倍的Road Map(产品路线图)!

第二年(2018年)的8月,在闪存半导体的行业大会FMS(Flash Memory Summit)上,SK Hynix表示,200层不过是一个过渡期,最终实现500层也是可能的!虽然没有公布单个Silicon Die的存储容量,从以往的趋势来看,应该是可以做到4Tbit/Die的堆叠数。

而且,今年(2019年)的8月6日,SK Hynix在FMS(Flash Memory Summit)上做了主题演讲(Key Note),演讲中很强势地提到了其Road Map(产品路线图):2020年176层、2025年500层以上、2030年800层以上。所谓的800层,理论上,是实现了8Tbit/Die的堆叠数。也就是说,用1个芯片(Single Die)就可以获得1TB!

SK Hynix在FMS(Flash Memory Summit)上做的主题演讲(Key Note)中展示的其Road Map(产品路线图)。(图片出自:笔者摄影,下同)

多值存储终于实现了5bit/cell

8月6日,又发生了令人震惊的事情!东芝存储半导体在FMS的主题演讲中表示,提高3D NAND闪存的存储密度的2个技术要素。

其一,就是多值存储技术。东芝表示,正在开发在一个存储单元(Memory Cell)上存储5bit数据的“PLC技术”。据说,主题演讲的听众当时颇受震惊!

以往的多值存储方式多采用的是一个存储单元(Memory Cell)上存储4bit的数据的QLC(Quadruple-Level Cell)技术。在QLC技术中,1个存储单元中写入了15个等级的阈值电压。相邻的阈值电压的差很小,很难调整。因此,在多值存储方式下,QLC技术达到了极限。

然而,东芝存储半导体却打破了这一认知,并展示了1个存储单元中写入31个等级的阈值电压时的实验结果。与东芝共同开发的合作伙伴Western Digital也展示了包含5bit/cell的多值存储的幻灯片。另外,把QLC改为PLC(注:笔者认为,P应该是“penta”的缩写),存储密度可以提高25%以上。

存储密度提高2倍的终极手段

另一种技术是,通过将存储单元(Memory Cell)的字线(Word Line)分割一半,使每个Memory Through Hole(存储过孔)的存储单元(Memory Cell)数量增加2倍。很明显生产将会变得十分困难,从理论上看,具有存储密度会增加2倍的优点。

东芝在主题演讲中,展示了将字线分割一半的Charge Trap(CT)型的单元(Cell)和Floating Gate(FG)型的单元(Cell)的试做断面的观察图像。

3D NAND闪存的大型厂商的开发热情似乎一点儿也没有降低,超多层、多值存储、存储单元的分割等,毫无疑问任何一项都是非同一般的高难度技术,即便如此,也要硬着头干下去,或许就是这个行业特征!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭