当前位置:首页 > 嵌入式 > 嵌入式软件
[导读]如何在晶心平台实作ROM patch

笔者曾协助多家公司工程师,在AndesCore™上发展firmware。我们发现,当客户开发Non-OS的程序代码,最常遇到的问题在于开发者不知如何撰写linker script。网络上有GNU ld的使用文件,但是linker script的范例太少,尤其开发者需要撰写进阶的linker script,常常不知如何下手。

本篇文章我们分享如何实作ROM patch。使用晶心CPU建构的embedded system,一般具有CPU、外围IP及RAM、ROM。部份客户使用ROM code开机,程序代码放在ROM内,data section放在SRAM里。ROM code的特性是成本低,跟着IC光罩一起生产,当IC制作完成即不可修改,若有制作上的错误或是程序代码逻辑上的错误,只能用ROM patch的方式修补。也就是将需要修补的程序代码放到小容量的flash里。这就是我们今天要分享的技术。

1. 主程序架构
首先介绍主程序的架构。IC的Memory layout如下图。

图表1  主程序的memory layout图
红色框线的部份,为主程序编译的范围。主程序main会呼叫到func1、func2和func3这3个function。
在上图中,黄色区域是IC的ROM,这部份的程序是IC制作出来即不可以改变。绿色部份是flash。在图中,flash分成2区,一个是jump_table,存放func1~func3的地址。剩余的空间FUNC_PATCH,预留给patch使用。

为了要修补ROM内的function,所以规划出jump_table区域,原本都是指向ROM的function。如果ROM里的部份function损坏或是需要改写,就把jump_table改为指向FUNC_PATCH里新建的function。

1.1 源代码
主程序的程序代码如下:(main.c)
#include <stdio.h>
#include <stdlib.h>
int func1(int);
int func2(int);
int func3(int);
int num1=1;
int num2=2;
int num3=3;

typedef struct strfunptr {
   int (*func_a)(int);
   int (*func_b)(int);
   int (*func_c)(int);
}sfptr;

sfptr jump_table __attribute__ ((section ("FUNC_TABLE")))= {func1, func2, func3};

int main(void) {

 printf("func1(30)=%dn",jump_table.func_a(30));
 printf("func2(30)=%dn",jump_table.func_b(30));
 printf("func3(30)=%dn",jump_table.func_c(30));

 return EXIT_SUCCESS;
}

int func1(int x){
 return x*num1;
}
int func2(int x){
 return x*num2;
}
int func3(int x){
 return x*num3;
}[!--empirenews.page--]

上面的程序代码中,第16行的程序代码__attribute__ ((section ("FUNC_TABLE"))),作用是将jump_table放在特定的”FUNC_TABLE”section里。

1.2 主程序linker script (仅列需要修改的部份)

  FUNC_TABLE 0x510000 :
    {
    *(.FUNC_TABLE)
     }

Flash的地址由0x510000起,将FUNC_TABLE固定在flash的最开头,语法如上。

1.3 主程序执行结果

func1(30)=30
func2(30)=60
func3(30)=90

2. 经过Patch之后的架构图
假设ROM里的func2损坏,要改用flash里的func2。需要更改指向func2的指标,及func2的内容。如下图:

 

图表2 ROM patch的memory layout图

用红色框线标起来的地方,表示为patch编译的范围。其中jump table在这里重新编译,指向新的地址。

2.1 实作方法
(1) 导出主程序的symbol table。
在主程序的Linker flags 加上-Wl,--mgen-symbol-ld-script=export.txt ,ld 会产生export.txt这个档案, 这个档案包含了一个SECTION block以及许多变数的地址。如下图所示


 

图表3 主程序的symbol

Linker script在import Main program的symbols时,除了需要修改的func2不要import之外,其他的symbols全部要import进来。(将export.txt删去这一行: func2 = 0x005001c4;  /* ./main.o */)

(2) patch在编译之前,先汇入主程序的symbol table。(将export.txt档案放在一起编译)。Patch的linker script要汇入主程序的symbol,写法如下面红色字体。[!--empirenews.page--]

ENTRY(_start)
/* Do we need any of these for elf?
   __DYNAMIC = 0;    */
INCLUDE "..export.txt" 
SECTIONS
{

(3) patch的程序代码里如下,没有main function,也不要加入startup files。改写func2。func2放在flash的FUNC_PATCH section。并且将jump_table里的func2,改成指向新的func2。


#include <stdio.h>
#include <stdlib.h>

extern int func1(int);
extern int func3(int);
int func2(int) __attribute__ ((section ("FUNC_PATCH")));
extern int num2;

typedef struct strfunptr {
   int (*func_a)(int);
   int (*func_b)(int);
   int (*func_c)(int);
}sfptr;

sfptr jump_table __attribute__ ((section ("FUNC_TABLE")))= {func1, func2, func3};

int func2(int x){
 return x*num2*100;
}

 (4) patch的linker script,加入FUNC_PATH在jump_table之后。
FUNC_PATCH 0x510020 :
    {
    *(.FUNC_PATCH)
     }

3. 如何除错
首先,将程序代码存放在IC的ROM及flash里。(本文为了示范,我们的做法是在AndeShape™ ADP-XC5的FPGA板上,用RAM模拟ROM及flash,分别将主程序和patch的bin文件restore到板子上。)

当gdb debug时,载入patch 的symbol。以下节录gdb指令。

core0(gdb) file mainprog.adx
core0(gdb) add-symbol-file patch.adx  0x500000 -s FUNC_TABLE 0x510000 -s FUNC_PATCH 0x510020
core0(gdb) set $pc=0x500000
core0(gdb) b main
Breakpoint 1 at 0x50010c: file ../main.c, line 20.
core0(gdb) c
Breakpoint 1, main () at ../main.c:20
20              printf("func1(30)=%dn",jump_table.func_a(30));
core0(gdb) s
func1 (x=30) at ../main.c:28
28              return x*num1;
core0(gdb) n
29      }
core0(gdb) s
main () at ../main.c:21
21              printf("func2(30)=%dn",jump_table.func_b(30));
core0(gdb) s
func2 (x=30) at ../patchprog.c:24
24              return x*num2*100;
core0(gdb)

上面过程中,先加载main的symbol,再加载patch的symbol及debug information。"add-symbol-file patch.adx  0x500000 -s FUNC_TABLE 0x510000 -s FUNC_PATCH 0x510020"是将patch section的symbol及debug information也载入gdb以debug。读者可以在gdb里,打"help add-symbol-file"查阅add-symbol-file的用法。

3.1 主程序patch后的执行结果

func1(30)=30
func2(30)=6000
func3(30)=90

4. 结语
目前晶心科技使用GNU的toolchain,其功能非常强大。读者可多动手试试不同的linker script写法,使得开发firmware更有弹性及效率。

5. 参考数据
gnu linker ld manual
http://sourceware.org/binutils/docs-2.22/ld/index.html

6. 作者简历
赖歆雅,女,台湾省新竹县人。1977年出生,2002年毕业于台灣成功大学电机研究所VLSI/CAD组硕士班。
2002~2005年就读台灣成功大学电机研究所VLSI/CAD组博士班(肄业)。
2005~2010年任职于工业技术研究院,担任副工程师,负责Linux上的软件开发。
2010~2012年任职于晶心科技,担任技术经理,负责客户的技术支持。
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

助力科研与检测新突破 上海2024年5月15日 /美通社/ -- 全球知名的科学仪器和服务提供商珀金埃尔默公司今日在上海举办了主题为"创新不止,探索无界"的新品发布会,集中展示了其在分析仪器领域的最...

关键字: 质谱仪 BSP DSC 气相色谱

上海2024年5月16日 /美通社/ -- 2024年5月10日至5月13日,富士胶片(中国)投资有限公司携旗下影像产品创新力作亮相北京P&E 2024。在数码相机展览区域,全新制定的集团使命"为世界绽...

关键字: 富士 数码相机 影像 BSP

贝克曼库尔特目前已成为MeMed Key免疫分析平台和MeMed BV检测技术的授权经销商 在原有合作的基础上,继续开发适用于贝克曼库尔特免疫分析仪的MeMed BV检测 加州布瑞亚和以色列海法2024年5月16日...

关键字: BSP IO 检测技术 免疫分析仪

英国英泰力能的燃料电池是可产业化的产品解决方案 英国首个专为乘用车市场开发的燃料电池系统 在 157kW 功率下,此燃料电池比乘用车的其他发动机更为强大 &...

关键字: ENERGY INTELLIGENT 氢燃料电池 BSP

深爱人才,共赴"芯"程 深圳2024年5月15日 /美通社/ -- 5月11日,深圳国资国企"博士人才荟"半导体与集成电路产业专场活动在深圳市重投天科半导体有限公司(简...

关键字: 半导体 集成电路产业 BSP 人工智能

武汉2024年5月15日 /美通社/ -- 北京时间4月26日-5月4日,2024 VEX 机器人世界锦标赛于美国得克萨斯州达拉斯市举办。本届 VEX 世锦赛为期九天,设有 VIQRC 小学组/初中组、V5RC 初中组/...

关键字: 机器人 BSP RC POWERED

上海2024年5月15日 /美通社/ -- 由生成式人工智能(AI)驱动的临床阶段生物医药科技公司英矽智能宣布,与复星医药(600196.SH;02196.HK)合作开发的潜在"全球首创"候选药物IS...

关键字: ISM BSP PC 人工智能

上海2024年5月13日 /美通社/ -- 5月8日,浦东新区国资委组织陆家嘴集团等9家区属企业与立邦中国召开合作交流会,旨在贯彻落实浦东新区区委、区政府工作要求,进一步放大进博会溢出带动效应,持续扩大区属企业与进博会重...

关键字: BSP 数字化 自动化立体仓库 智慧园区

上海2024年5月13日 /美通社/ -- 在数字化时代,高效的税务管理和ERP系统成为企业发展的关键。为了满足这一需求商应信息科技与Exact Software 易科软件就金四全电票税系统与ERP系统集成及商务合作建立...

关键字: AC 软件 BSP 数字化

北京2024年5月13日 /美通社/ -- 5月11日,鲲鹏昇腾开发者大会2024期间,华为举办"昇思AI框架及大模型技术论坛",软通动力数字基础设施与集成事业部总经理谢睿受邀出席、软通动力...

关键字: AI 模型 BSP 精度
关闭
关闭