当前位置:首页 > 嵌入式 > 嵌入式软件
[导读] 没有调试器的情况下编写程序时最糟糕的状况是什么?编译时跪着祈祷不要出错?用血祭召唤恶魔帮你运行程序?或者在每一行代码间添加printf("test")语句来定位错误点?如你所知,

 没有调试器的情况下编写程序时最糟糕的状况是什么?编译时跪着祈祷不要出错?用血祭召唤恶魔帮你运行程序?或者在每一行代码间添加printf("test")语句来定位错误点?如你所知,编写程序时不使用调试器的话是不方便的。幸好,linux下调试还是很方便的。大多数人使用的IDE都集成了调试器,但 linux 最著名的调试器是命令行形式的C/C++调试器GDB。然而,与其他命令行工具一致,DGB需要一定的练习才能完全掌握。这里,我会告诉你GDB的基本情况及使用方法。

安装GDB

大多数的发行版仓库中都有GDB

Debian 或 Ubuntu

$ sudo apt-get install gdb

Arch Linux

$ sudo pacman -S gdb

Fedora,CentOS 或 RHEL:

$sudo yum install gdb

如果在仓库中找不到的话,可以从官网中下载。

示例代码

当学习GDB时,最好有一份代码,动手试验。下列代码是我编写的简单例子,它可以很好的体现GDB的特性。将它拷贝下来并且进行实验——这是最好的方法。

#include #include int main(int argc, char **argv) { int i; int a=0, b=0, c=0; double d; for (i=0;i<100;i++) { a++; if (i>97) d = i / 2.0; b++; } return 0; }

GDB的使用

首先最重要的,你需要使用编译器的 “-g“选项来编译程序,这样可执行程序才能通过GDB来运行。通过下列语句开始调试:

$ gdb -tui [可执行程序名]

使用”-tui“选项可以将代码显示在一个漂亮的交互式窗口内(所以被称为“文本用户界面 TUI”),在这个窗口内可以使用光标来操控,同时在下面的GDB shell中输入命令。

现在我们可以在程序的任何地方设置断点。你可以通过下列命令来为当前源文件的某一行设置断点。

break [行号]

或者为一个特定的函数设置断点:

break [函数名]

甚至可以设置条件断点

break [行号] if [条件]

例如,在我们的示例代码中,可以设置如下:

break 11 if i >97

这样,程序循环97次之后停留在“a++”语句上。这样是非常方便的,避免了我们需要手动循环97次。

最后但也是很重要的是,我们可以设置一个“观察断点”,当这个被观察的变量发生变化时,程序会被停止。

watch [变量]

这里我们可以设置如下:

watch d

当d的值发生变化时程序会停止运行(例如,当i>97为真时)。

当设置断点后,使用"run"命令开始运行程序,或按如下所示:

r [程序的输入参数(如果有的话)]

gdb中,大多数的命令单词都可以简写为一个字母。

不出意外,程序会停留在11行。这里,我们可以做些有趣的事情。下列命令:

bt

回溯功能(backtrace)可以让我们知道程序如何到达这条语句的。

info locals

这条语句会显示所有的局部变量以及它们的值(你可以看到,我没有为d设置初始值,所以它现在的值是任意值)。

当然:

p [变量]

这个命令可以显示特定变量的值,而更进一步:

ptype [变量]

可以显示变量的类型。所以这里可以确定d是double型。

既然已经到这一步了,我么不妨这么做:

set var [变量] = [新的值]

这样会覆盖变量的值。不过需要注意,你不能创建一个新的变量或改变变量的类型。我们可以这样做:

set var a = 0

如其他优秀的调试器一样,我们可以单步调试:

step

使用如上命令,运行到下一条语句,有可能进入到一个函数里面。或者使用:

next

这可以直接运行下一条语句,而不进入子函数内部。

结束测试后,删除断点:

delete [行号]

从当前断点继续运行程序:

continue

退出GDB:

quit

总之,有了GDB,编译时不用祈祷上帝了,运行时不用血祭了,再也不用printf(“test“)了。当然,这里所讲的并不完整,而且GDB的功能远远不止于此。所以我强烈建议你自己更加深入的学习它。我现在感兴趣的是将GDB整合到Vim中。同时,这里有一个备忘录记录了GDB所有的命令行,以供查阅。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭