当前位置:首页 > 嵌入式 > 嵌入式软件
[导读]基于TLC5947的旋转LED屏显示控制器设计

摘要:为了更好地利用基于视觉暂留原理(POV原理)的旋转式线阵LED显示屏技术,采用Qtouch触摸技术与旋转LED屏相结合的方法,设计了一款基于TLC5947和ARM Cortex-M3核STM32F103的低成本、低功耗、高分辨率的LED屏显示控制器。实验结果表明,该旋转LED屏幕能够实现时钟、文字的显示功能,并能够在Qtouch触摸信号的控制下实现各种显示状态的切换工作。
关键词:TLC5947;ARM Cortex-M3;显示控制器;LED

引言
    在各种设备中,显示设备占有重要地位,少了显示设备就像人少了眼睛,很多内在的东西都看不见。显示设备很重要也很常见,然而它的外形总是那么单调,像一个个的模型。旋转LED屏以其新颖、可视角360°吸引了电子狂热者的眼光。本项目是通过主控芯片STM32F103,将触摸技术与旋转LED屏幕相结合,可以实现时钟的变换,还可以利用触摸技术在旋转LED上玩一些小游戏,让旋转LED不再只是单一的观赏性的技术。
    旋转LED显示屏是一种通过同步控制发光二极管(LED)位置和点亮状态来实现图文显示的新型显示屏,因其结构新颖、成本低、可视视角达360°而得到了迅速的发展。目前,常见的LED显示屏都是采用扫描方式进行显示的,其实现原理是在不同时间段内控制不同批次的LED轮流点亮,根据人眼的视觉暂留特性,当扫描帧频达到24Hz以上时,人眼便感觉不到扫描过程,而是一幅稳定的图像。旋转显示屏则是通过控制一行或一列LED快速移动位置和改变点亮状态来实现图形的显示,如果LED在各位置循环变换速度足够快,同样可以显示出一幅稳定的图像。  POV原理(即视觉滞留原理)将它用于显示屏,优势表现在可用少量LED实现传统方式下海量LED才能实现的显示屏。用单片机控制LED,触摸按键提供用户与系统交互。旋转中的LED漂浮在半空中的景观给视觉带来享受。
    基于这样的现状和原理,本文提出了基于TI公司TLC5947驱动芯片及STM32F103的旋转LED屏显示控制器设计。该旋转LED屏采用人眼视觉频率滞留原理,制作的旋转LED虚拟屏在微控制器的精确控制下,使用少量的LED便可完全实现传统方式下海量LED才能实现的一种新型显示技术。旋转三基色全彩LED是基于RGB原理,通过改变三种颜色的色调、饱和度、强度可以实现最高36色真彩图片显示,从而使显示更加绚烂夺目。该旋转LED屏与平板式LED显示屏和其他显示器技术(如CRT、LCD、PDP)相比较,旋转式线阵LED屏幕有着成本低、分辨率高、功耗小等几个明显优势。

1 系统硬件设计
    STM32F103通过TLC5947与LED连接,用来控制旋转板上LED灯的显示。例如可以通过单片机STM32F103控制LED灯旋转显示时钟模样或各种图形,如果条件允许的话,可以显示一些简单的游戏。LED与ARM处理器相连接,通过ARM处理器对触摸信号的处理来实现LED灯的显示样式的变化,从基态的指针式时钟变为数字显示式以及改变其显示的背景,还可以进行时间的校准操作。TLC5947驱动旋转LED屏显示控制电路如图1所示。

[!--empirenews.page--]
1.1 STM32F103简介
    选用了STM32F103控制器,STM32F103是增强型系列,最高工作时钟频率可达72 MHz,具有ARM Cortex-M3内核、128~256 KB Flash、20~48 KB RAM、8 MHzCPU晶振、32.768 kHz RTC晶振以及丰富的外设(64个快速I/O口)和4 GB的线性地址空间。ARM采用的仿真器很贵,而单片机的调试工具则非常便宜。相较之下,Cortex-M3参考单片机,专门拿出一个引脚来做调试,从而节约了大量的人力物力。Cortex-M3集成了大多数的存储器控制器,这样就可以直接在MCU外连接Flash,降低了设计难度和应用障碍。Cortex-M3处理器结合了多种突破性技术,使得它能实现低功耗、低成本、高性能三者(或二者)的结合。编程支持ISP下载功能,能通过USB端口和JLINK仿真器供电,使用起来非常方便。
1.2 TLC5947简介
    TLC5947是TI(德州仪器)公司推出的24通道,具有内部晶振的12位PWM脉宽调制的LED驱动芯片。TLC5947采用超小32引脚QFN的高级封装。它为LED提供了精确的恒流值,通道与芯片之间的差异值只有±2%;高速的传输速率(单片芯片时30 MHz,级联为15 MHz);输出通道之间交错时间迟滞,避免出现传输误差;该芯片内部具有温度检测系统,当芯片的温度过高时为了保护芯片,它会自动断开所有的输出通道,当温度恢复正常,芯片正常工作;该芯片支持级联,可以多个芯片共同工作以驱动更大规模的LED显示屏幕。24个通道的当前电流值是通过外部IREF与地之间的阻值来设置的,驱动电路中的电阻由所驱动LED灯的电流决定。芯片具有宽泛的操作电压3.0~5.5 V,含有4 MHz的内部晶振。TLC5947适用驱动全彩LED和显示屏。
1.3 LED显示屏
    选用三色(RGB)LED灯,实现多重色彩光源,绚丽多彩的输出。同时,LED本身也具备相当的稳定度、高效率、单色彩纯度高、光强度可调等功能。LED与ARM处理器相连接,通过ARM处理器对触摸信号的处理来实现LED灯的显示样式的变化,从基态的指针式时钟变为数字显示式,以及改变其显示的背景,还可以进行时间的校准操作。

2 系统软件设计
2.1 点亮点-线-圆的设计及其算法和公式
    点设计主要应用直角坐标到圆坐标转换,通过坐标转换点亮任何位置的灯。线设计源于点设计,在点设计基础上采用Bresenham直线演算法画出所需的直线、斜线、曲线。在线设计基础上衍生出矩形绘画、绘图、填充等功能。
    程序初始化完了,接着定义由直角坐标转换到极坐标,在程序中将弧度转到角度,在转换的时候考虑到会有负数数据的输入,加入360+ 0.5均是为了优化程序,防止出现误差。程序中距离,角度
    直角坐标到圆坐标转换算法如下:
   
    直角坐标转换完后,可以设置点的亮灭,接着用Bresenham直线演算法画出直线。


    程序的整体流程如图2所示。系统上电后,首先读取系统的初始状态,设置ARM和TLC5947的工作状态,开启无线通信;然后等待旋转屏幕稳定,初始化菜单,等待输入指令;利用Qtouch控制传输命令到STM32F103,执行指令(用户交互过程);执行用户命令操作。[!--empirenews.page--]
2.2 TLC5947芯片时序
    TLC5947时序如图3所示,芯片的主要控制引脚有4个:数据输入端SIN、外部时钟输入端SCLK、灰度寄存器控制端XIAT以及输出控制端BLANK。通过数据输入端口将所需要的灰度数据送到SIN端,然后通过控制时钟信号SCLK将数据写入到芯片内部的灰度数据移位寄存器中,之后通过控制灰度寄存器的控制端XLAT的高低电平变换实现芯片TLC5947内部灰度数据的更新。当XLAT引脚的电平发生变化而产生一个上升沿时,TLC5947内部灰度数据将被更新一次,即图3中Grayscale LatchData中被重新写入数据。芯片的数据输出分两部分,一部分是串行数据输出和恒流源数据输出。串行数据输出是接在灰度数据移位寄存器之后,当寄存器的数据满256位时,可以根据SCLK时钟的变化通过一个DQ触发器将数据从串行数据端口SOUT端输出,这一端口主要是芯片级联时后一级芯片的数据输入;而恒流源数据输出OUT0~OUT23则是通过输出控制端口BLANK和芯片内部自带时钟Oscillator Clock来共同控制,其中输出电流大小则可以通过芯片的VREF引脚的外接到地电阻来控制,根据外接LED的自身限流参数,保证LED正常工作。本系统中采用的是3.2 kΩ电阻,所以该芯片的控制主要是4个引脚端口的控制,操作上比较简单方便。



3 结论
    实验中,通过主控制器STM32F103对两片级联的TLC5947芯片进行了测试,外围电路连接的是三色LED灯,外界供电电压为5 V稳压源,转换之后系统的供电电压为3.3 V稳压源。当写入相对应的程序控制字时,三色LED灯能够正确显示,单一色、混色两种工作模式均成功得以实现。而且LED灯之间的变化时间可以通过程序来控制,只要主控制器的时钟频率合适,变换时间均在人眼识别能力之外,这样就可以通过改变不同的程序控制字来实现全彩LED屏的设计。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭