当前位置:首页 > 嵌入式 > 嵌入式软件
[导读]反辐射导弹抗诱骗性测试系统UI设计

摘要:为改善传统反辐射导弹抗诱骗性测试系统操作界面,采用S3C2440A处理器及wince6.0平台,设计了一套适用于反辐射导弹抗诱骗性测试的用户界面,并通过触摸屏来进行操作,同时利用FPGA将测试系统中的模拟信号源控制部分进行数字化,与用户界面有机结合,现场测试表明,该系统具有人机界面友好,操作简易方便,反应速度高效,易于维护升级等特点。
关键词:嵌入式系统;反辐射导弹;触摸屏用户界面;FPGA

抗诱骗性是反辐射导弹的一个重要指标,而反辐射导弹抗诱骗性的测量也是导弹测试系统的一个重要项目。本文在传统的反辐射导弹抗诱骗性测试系统中,结合当前流行的触摸屏技术,将嵌入式系统引入到反辐射导弹测试系统当中,为系统的使用带来全新体验。同时,为将触摸屏技术完美的与测试系统结合,又需要对雷达模拟信号源进行数字化改造。在以上的背景下,本文设计了一款基于ARM+FPGA平台的反辐射导弹抗诱骗性测试系统界面,并做出实际电路,经使用,测试系统运行正常,各项参数达到要求,人机界面操作方便,简单可靠,反应迅速。

1 设计过程
1.1 整机构成
整个测试系统包括雷达模拟信号源,被测导弹,天线3部分组成。雷达模拟信号源由以下3部分组成:人机交互界面,数字控制及数字视频信号产生和模拟电路部分。人机交互界面在广州友善之臂计算机科技有限公司生产的mini2440嵌入式开发平台上开发完成;数字控制信号及视频信号由Spartan Xc3s400产生;模拟电路部分包括数字可调锁相环,混频器,数字衰减器等部分构成。
本次开发的GUI程序及数字平台是测试系统中的雷达模拟信号源部分中的前两部分。根据实际的反辐射导弹抗诱骗性测试的要求,本文实现了具有图形接口界面的测试控制平台,具有界面美观,交互性强等特点。
1.2 硬件平台
硬件平台分两部分,一部分是以ARM为主的mini2440开发板,用于实现触摸屏人机界面;一部分是以FPGA为主的数字控制及视频信号产生功能模块。ARM开发板采用Samsung公司的S3C2440A微处理器,S3C2440A是基于ARM9的32位RISC型CPU,主频采用400 MHz,安装Wince6.0操作系统及测试系统界面软件,LCD采用分辨率为800x480的7”触摸屏,开发板上还有其它常用外围设备;XC3s400是Xilinx公司的Spartan3系列的现场可编程门阵列,拥有40万门电路构成,其中有8 064个逻辑单元。FPGA功能模块上的串口RS232电平转换芯片采用的是Sipex公司的SP3223,该芯片可以工作在+3.0~+5.5 V的电压范围,外围器件仅需四个0.1μF的电容即可正常工作,方便快捷,稳定可靠,硬件逻辑结构如图1所示。


1.3 软件结构
软件平台采用Wince6.0操作系统,图形界面采用MFC智能设备应用程序,并安装mini2440开发板带有的wince6.0的sdk,在Visual studio 2008环境下进行交叉编译开发,最后通过Windows Mobile 6.1进行在线程序调试。
由于本文中ARM系统采用的是友善之臂提供的mini2440开发板因此开发过程大大得到简化,开发步骤主要包括:FPGA模块电路板设计与制作,FPGA设计开发;配置VS2008开发环境,GUI应用程序设计;ARM板与FPGA板联调。

2 测试系统GUI设计与实现
根据反辐射导弹抗诱骗性测试系统的功能要求,GUI应包含一下几个可选项:1)雷达信号载波频率;2)雷达信号,诱饵信号1,诱饵信号2脉冲宽度;3)雷达信号诱饵信号功率比;4)重频PRF;5)雷达信号诱饵信号相位关系;6)雷达诱饵信号通道开关;7)是否相参,是否闪烁;8)小键盘,方便用户输入参数。
MFC提供了丰富的窗口控件,这里主要用到了对话框,Button按钮控件,Check Box单选框控件,Image图像控件,Static Text静态文本控件,Edit Contrd等等。在VS2008中交叉编译通过后,通过windows Mobile6.1连接开发板,进行在线的调试,调试成功后就可以直接拷到mini2440的flash上。运行结果如图2所示。


当用户触碰需要点击的文本框时,就会弹出一个方便用户输入的小键盘界面。[!--empirenews.page--]
用户将参数输完后,点击设置键,此时mini2440通过串口将信息发送给FPGA。为同步数据,将每个数据包的开头加入起始位,用来进行同步。数据包如图3所示。



3 FPGA模块设计
此部分是整个系统的中枢,用于将用户命令转换为控制信号来控制各个器件的工作状态,其中被控器件包括数字锁相环,数字衰减器,FPGA同时产生视频信号。
FPGA内部主要包舍有3个模块,内部结构框图如图4所示。
在串口模块中,主要分为3大部分,串口底层模块,包头检测,数据存储。其中串口底层模块设计框图图5所示。


外围器件SP3223将BS232电平转换为CMOS电平并通过Rx传给FPGA。当使能有效时,UART模块首先检测起始位,如果有效,则屏蔽信号监测器,由UART内核按波特率时钟对八位数据位进行同步接收,并判断最后一位终止位是否为‘1’,如果满足要求,则将此帧数据放到数据总线上,并给状态信号上置10个时钟周期的高电平。读完九个数据后,重新使能信号监测器等待下帧数据。本系统中波特率设为19 200,全局时钟为50 MHz,分频器分频系数用以下公式计算divide=freq/baudrate≈2 604。
当串口模块处理完一包数据之后,将数据包以数组的形式传给操作模块,并使能操作模块。操作模块进行数据包解码,将数据包拆包,将数据分别传给视频信号产生器和相应I/O端口。
由于三路视频信号之间存在相位关系,因此以第一路雷达信号为基准,设定一个较大的统一延时量,在此基础上进行加减,即为各路视频信号的相位信息。这种方法简单高效。
[!--empirenews.page--]
4 系统测试结果
反辐射导弹抗诱骗信号模拟器整机实物图及触摸屏控制面板如图6所示。


对于不同的参数设置,三路信号典型输出波形的测试结果如图7所示,其中从上到下的通道依次为雷达,诱饵1,诱饵2三个通道。


在实际使用当中,本GUI运行正常,操作界面简单易懂,实际操作中,反应速度迅速,没有迟滞感,在点击输入框时出现的小键盘,按键面积大,对输入数据有很大帮助,使用过程中,也没有出现误操作。图7是在不同脉宽,不同相位,不同功率的情况下信号源所产生的结果,由数字示波器采样得到的,测试结果与设置符合一致,达到了设计要求。

5 结论
本文是在原有的反辐射导弹抗诱骗测试系统上,引入触摸屏技术,按照测试系统实际应用要求设计操作界面,简洁高效,操作方式新颖;在雷达模拟探部分采用数字化本振源,用FPGA作为源的控制器及视频信号的产生器,使得界面与系统有机结合,同时系统设计也更加灵活,可靠。最后通过调试安装,系统成功应用于反辐射导弹的测试系统中,为反辐射导弹性能的测试提供了便利。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭