当前位置:首页 > 电源 > 电源-能源动力
[导读]石墨烯到底是什么?石墨烯是人们发现的第一种由单层原子构成的材料。碳原子之间相互连接成六角网格。铅笔里用的石墨就相当于无数层石墨烯叠在一起,而碳纳米管就是石墨烯卷成

石墨烯到底是什么?

石墨烯是人们发现的第一种由单层原子构成的材料。碳原子之间相互连接成六角网格。铅笔里用的石墨就相当于无数层石墨烯叠在一起,而碳纳米管就是石墨烯卷成了筒状。

 

石墨、石墨烯、碳纳米管和球烯之间的关系。图片来源:enago.com

由于碳原子之间化学键的特性,石墨烯很顽强:可以弯曲到很大角度而不断裂,还能抵抗很高的压力。而因为只有一层原子,电子的运动被限制在一个平面上,为它带来了全新的电学属性。石墨烯在可见光下透明,但不透气。这些特征使得它非常适合作为保护层和透明电子产品的原料。

但是适合归适合,真的做出来还没那么快。

问题之一:制备方式。

许多项研究向我们展示了石墨烯的惊人特征,但有一个陷阱。这些美妙的特性对样品质量要求非常高。要想获得电学和机械性能都最佳的石墨烯样品,需要最费时费力费钱的手段:机械剥离法——用胶带粘到石墨上,手工把石墨烯剥下来。

别笑,2004年诺沃肖洛夫他们就是这么制备出石墨烯的。

 

诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带。胶带上的签名“Andre Geim”就是和诺沃肖洛夫一同获得诺贝尔奖的人。图片来源:wikipedia

虽然所需的设备和技术含量看起来都很低,但问题是成功率更低,弄点儿样品做研究还可以,工业化生产?开玩笑。要论产业化,这手段毫无用途。哪怕你掌握了全世界的石墨矿,一天又能剥下来几片……

当然现在我们有了很多其他方法,能增加产量、降低成本——麻烦是这些办法的产品质量又掉下去了。我们有液相剥离法:把石墨或者类似的含碳材料放进表面张力超高的液体里,然后超声轰炸把石墨烯雪花炸下来。我们有化学气相沉积法:让含碳的气体在铜表面上冷凝,形成的石墨烯薄层再剥下来。我们还有直接生长法,在两层硅中间直接设法长出一层石墨烯来。还有化学氧化还原法,靠氧原子的插入把石墨片层分离,如此等等。方法有很多,也各自有各自的适用范围,但是迄今为止还没有真的能适合工业化大规模推广生产的技术。

这些办法为什么做不出高质量的石墨烯?举个例子。虽然一片石墨烯的中央部分是完美的六元环,但在边缘部分往往会被打乱,成为五元或七元环。这看起来没啥大不了的,但是化学气相沉积法产生的“一片”石墨烯并不真的是完整的、从一点上生长出来的一片。它其实是多个点同时生长产生的“多晶”,而没有办法能保证这多个点长出来的小片都能完整对齐。于是,这些畸形环不但分布在边缘,还存在于每“一片”这样做出来的石墨烯内部,成为结构弱点、容易断裂。更糟糕的是,石墨烯的这种断裂点不像多晶金属那样会自我愈合,而很可能要一直延伸下去。结果是整个石墨烯的强度要减半。材料是个麻烦的领域,想鱼与熊掌兼得不是不可能,但肯定没有那么快。

 

显微镜下的一块石墨烯,伪色标记。每一“色块”代表一片石墨烯“单晶”。图片来源:Cornell.edu

问题之二:电学性能。

石墨烯一个有前景的方向是显示设备——触屏,电子纸,等等。但是目前而言石墨烯和金属电极的接触点电阻很难对付。诺沃肖洛夫估计这个问题能在十年之内解决。

但是为啥我们不能干脆抛弃金属,全用石墨烯呢?这就是它在电子产品领域里最致命的问题。现代电子产品全部是建筑在半导体晶体管之上,而它有一个关键属性称为“带隙”:电子导电能带和非导电能带之间的区间。正因为有了这个区间,电流的流动才能有非对称性,电路才能有开和关两种状态——可是,石墨烯的导电性能实在太好了,它没有这个带隙,只能开不能关。只有电线没有逻辑电路是毫无用途的。所以要想靠石墨烯创造未来电子产品,取代硅基的晶体管,我们必须人工植入一个带隙——但是简单植入又会使石墨烯丧失它的独特属性。目前针对这个领域的研究的确不少:多层复合材料,添加其他元素,改变结构等等;但是诺沃肖洛夫等人认为这个问题要真正解决,还要至少十年。

问题之三:环境风险。

石墨烯产业还有一个意想不到的麻烦:污染。石墨烯产业目前最成熟的产品之一可能是所谓“氧化石墨烯纳米颗粒”,它很便宜,虽不能用来做电池、可弯折触屏等高端领域,作为电子纸等用途倒是相当不错;可是这东西对人体很可能是有毒的。有毒不要紧,只要它老老实实呆在电子产品里,那就没有任何问题;可是前不久研究者刚发现它在地表水里非常稳定、极易扩散。虽然现在对它的环境影响下断言还为时太早,但这的确是个潜在问题。

所以,石墨烯的命运究竟如何?

鉴于过去几个月里学界并无新的突破性进展,近日它的这波突发性“火热”,恐怕本质上还是资本运行的炒作结果,应审慎对待。作为工业技术,石墨烯看起来还有许多未能克服的困难。诺沃肖洛夫指出,目前石墨烯的应用还是受限于材料生产,所以那些使用最低级最廉价石墨烯的产品(譬如氧化石墨烯纳米颗粒),会最先面世,可能只需几年;但是那些依赖于高纯度石墨烯的产品可能还要数十年才能开发出来。对于它能否取代现有的产品线,诺沃肖洛夫依然心存疑虑。

另一方面,如果商业领域过度夸大其神奇之处,可能会导致石墨烯产业变成泡沫;一旦破裂,那么也许技术和工业的进展也无法拯救它。科学作者菲利普·巴尔曾经在《卫报》上撰文《不要期望石墨烯带来奇迹》,指出所有的材料都有其适用范围:钢坚硬而沉重,木头轻便但易腐,就算看似“万能”的塑料其实也是种种大相径庭的高分子各显神通。石墨烯一定会发挥巨大的作用,但是没有理由认为它能成为奇迹材料、改变整个世界。或者,用诺沃肖洛夫自己的话说:“石墨烯的真正潜能只有在全新的应用领域里才能充分展现:那些设计时就充分考虑了这一材料特性的产品,而不是用来替代现有产品里的其他材料。” 至于眼下的可打印、可折叠电子产品,可折叠太阳能电池,和超级电容器等等新领域能否发挥它的潜能,就让我们平心静气拭目以待吧。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

石墨烯是一种由碳原子构成的二维晶体,具有出色的导电性、热导性和力学性能。它的独特结构和优越特性使其成为材料科学和纳米技术领域的焦点研究对象。本文将介绍石墨烯的原理结构,并探讨其在各个领域的应用前景。

关键字: 石墨烯 二维晶体 导电性

本文将对石墨烯的发展现状进行详细分析。作为一种具有独特结构和优异性能的二维材料,石墨烯已经引起了全球范围内的广泛关注和研究。文章将探讨石墨烯的制备方法、主要应用领域、市场前景以及面临的挑战。我们还将介绍一些主要的石墨烯研...

关键字: 石墨烯 二维材料 碳原子

石墨烯被研究者和各大媒体誉为“新材料之王”,是人类已知强度高、韧性好、重量轻、透光率高、导电性佳的新型纳米材料。我相信每个人都会知道几年前,石墨烯电池在电池行业中的热度更高,但最近缺乏了谈资,主流的电池还是锂电池,石墨烯...

关键字: 石墨烯 电池 锂电池

一个快速的电脉冲完全翻转了材料的电子特性,开辟了通往超快、受大脑启发的超导电子产品的途径。 物理学家发现了一种在魔角石墨烯中开启和关闭超导性的新方法。这一发现可能会导致超快、节能的超导晶体管用于“神经形态”电子产品,其...

关键字: 超导电子产品 石墨烯

随着摩尔定律不断逼近极限,现在的硅基半导体技术很快会碰到极限,1nm及以下工艺就很难制造了,新的技术方向中石墨烯芯片是个路子,国内也有多家公司组建联盟攻关这一技术,其性能可达硅基芯片的10倍。

关键字: 石墨烯 半导体 芯片 1nm

石墨烯(Graphene)是一种以sp²杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料 。石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种...

关键字: 石墨烯

上海2021年12月8日 /美通社/ -- 近日,第六届国际碳材料大会组委会发布了关于“2021第六届国际碳材料大会”延期举办的公告,全文如下: 尊敬的参会专家、企业同仁和业界朋友们: 您好。原定于2021年12月...

关键字: 碳材料 BSP 碳化硅 石墨烯

在科学技术高度发达的今天,各种各样的高科技出现在我们的生活中,为我们的生活带来便利,那么你知道这些高科技可能会含有的石墨烯吗?

关键字: 石墨烯 锂离子电池 磷酸铁锂

随着社会的快速发展,我们的负极材料也在快速发展,那么你知道负极材料的详细资料解析吗?接下来让小编带领大家来详细地了解四种负极材料有关的知识。

关键字: 锂离子电池 负极材料 石墨烯

为加快推进和落实石墨烯产业链“链长制”工作,优化深圳市石墨烯产业发展环境,夯实发展基础,提升发展能级,深入实施创新驱动发展战略。

关键字: 石墨烯
关闭
关闭