当前位置:首页 > 电源 > 电源-能源动力
[导读]在科技的发展道路上,离不开能源的助力,特别是再科技飞速发展的今天,而地球上的能源有限,就需要科研人员不断开发新能源,这就再当下最需要研发太阳能的使用。2009年,日本科学家Tsutomu Miyasaka率先将钙钛矿材料用于染料敏化太阳能电池作为吸光材料,采用CH3NH3PbI3敏化TiO2阳光极和液态I3-/I-电解质获得了3.8%的光电转化效率。而后,科学家们对钙钛矿材料和结构进行改善,短短10年内,钙钛矿太阳电池的光电转换效率获得飞速提升,已达到25.2%,2019年,钙钛矿电池也即将要走向商业化生

在科技的发展道路上,离不开能源的助力,特别是再科技飞速发展的今天,而地球上的能源有限,就需要科研人员不断开发新能源,这就再当下最需要研发太阳能的使用。2009年,日本科学家Tsutomu Miyasaka率先将钙钛矿材料用于染料敏化太阳能电池作为吸光材料,采用CH3NH3PbI3敏化TiO2阳光极和液态I3-/I-电解质获得了3.8%的光电转化效率。而后,科学家们对钙钛矿材料和结构进行改善,短短10年内,钙钛矿太阳电池的光电转换效率获得飞速提升,已达到25.2%,2019年,钙钛矿电池也即将要走向商业化生产。

25.2%的转换效率记录已通过NREL认证,高于CIGS(转换效率=23.4%)、CdTe(转换效率=22.1%)、甚至多晶硅(转换效率=22.8%)。

未来10年钙钛矿电池发展面临的重大挑战是什么?除致力于达到理论效率极限外,需要将小面积钙钛矿电池积累的技术经验转移到大面积组件和叠层结构器件的商业化生产中,也需要保证钙钛矿电池的长期稳定性。除此,未来可能会发展可回收的钙钛矿电池材料。因此,预测将在以下方面进行研究:

实现转换效率的理论极限值。根据相关参数分析,开路电压(VOC)和填充因子(FF)实验数据与理论值之间存在一定程度的差距。据报道,VOC和FF与非辐射复合有关,包括Shockley-Read-Hall复合和界面复合。因此,需要对界面和晶界进行研究,以便更好地理解复合的起源。人们提出了不同的界面工程技术,但观察到的数据仍显示与理论上值VOC(1.33V)和FF(0.91)存在差异。目前需要寻求一个通用有效的方法在单结钙钛矿电池上获得超过30%的转换效率。

大面积涂层溶液的研究。大面积涂层旋涂过程中的向心力允许在涂层溶液中使用高沸点极性非质子溶剂形成钙钛矿薄膜。然而,用于旋涂方法的极性非质子溶剂溶液仅适用于超过10×10 cm的大面积涂层,这意味着需要为没有向心力的大面积涂层开发新的涂层溶液。

长期稳定性的研究。虽然最近的报告包括稳定性测试结果,但根据国际电工委员会(IEC)提供的光伏测试标准,钙钛矿光伏电池还需要更加准确的测试结果。因此,最好研究钙钛矿电池在1000小时光照和85°C相对湿度、湿热1000小时的稳定性。对于长期稳定的钙钛矿电池,良好的封装可能是最好的方法,材料科学和界面工程是提高对光照、水分和温度的稳定性的先决条件。2D/3D复合钙钛矿相比3D钙钛矿显示出更好的稳定性,界面工程表现出更好的稳定性和更优的性能。

 


 

回收技术。为避免铅浪费,回收技术是十分重要的。可以对废弃的钙钛矿太阳能组件进行化学处理以溶解钙钛矿,需要开发有效的收集铅的方法,特别是收集铅I2、导电衬底和金属电极,实现完全可循环利用。

基于钙钛矿的串联技术。叠层结构被认为是钙钛矿电池进入光伏市场的有效途径之一。钙钛矿电池可以用作顶部单元,较窄的带隙Si或CIGS放置在底部。需要对最佳带隙进行设计,以达到效率的最大化;此外,还应进行光电管理方面的研究,以改善最终叠层结构中的光伏参数;就叠层电池结构而言,钙钛矿顶部电池的正向或反向结构取决于半导体Si的类型。例如,使用p型Si底部电池和在Si底部电池顶部的倒置钙钛矿结构报告了超过25%的转换效率;除了双结之外,三结也可能得到更高的转换效率。模拟结果预测,底部具有1.1 eV Si,中部具有1.44 eV钙钛矿,顶部具有1.95 eV钙钛矿的三结单元可产生约39%的效率。

日前,纤纳光电钙钛矿组件获得全球首次IEC稳定性测试报告,协鑫纳米实用化钙钛矿组件在1241.16平方厘米的有效面积上达到了15.31%的效率,钙钛矿电池商业化已经指日可待,作为最具潜力的电池技术,下一个十年,有足够的理由相信,钙钛矿也将在工业化中实现高效率生产。届时,光伏行业将迎来一场新的变革。如果某一天人们能高效利用太阳能,相信能解决很大的能源问题,毕竟太阳能是符合可持续发展战略的,能保证人类的永续发展,需要我们科研人员更加努力。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭