当前位置:首页 > 电源 > 电源-能源动力
[导读]3.2 SS-SSHI 电路分析3.2.1 开关相位延迟根据文献[7]中SSHI 电路的原理分析,开关动作应该刚好发生在电压Vp 达到它的极值,也就是Vmax或Vmin。然而在SS-SSHI 电路中,开关动

3.2 SS-SSHI 电路分析

3.2.1 开关相位延迟

根据文献[7]中SSHI 电路的原理分析,开关动作应该刚好发生在电压Vp 达到它的极值,也就是Vmax或Vmin。然而在SS-SSHI 电路中,开关动作刚好在这一时刻是不可能的,由于包络检测器和比较器里的二极管和三极管的压降,所以在开关动作时刻和最大值(最小值) Vp 之间存在一个相位延迟。这个相位延迟可在图6 中看出为ψ,可由下式计算得:

 

 

通过图(6),可以看出开关动作时刻和位移最大值(也就是ieq =0)时刻之间的相位差φ 为:

 

 

其中θ 是压电片电压最大值Vp,oc 和ieq 的0 穿越点(从正到负)之间的相位差。显然,这个相位差异φ是变化的,然而在文献[15] 中它被当成常数。

3.2.2 电路工作中的电压变化

传统的SSHI 电路,在半个振动周期内只存在两个阶段即自然充电和电压翻转阶段,这两个中间电压可以通过这两个过程中的充电和放电来计算。而在SS-SSHI 电路中,由于自感知开关电路中各阶段的交互作用,更多的阶段需要区分开来以便更好地分析电路的特性。四个阶段的电路工作原理在前面已叙述过,从图7 中可看出四个阶段的电压从V1 到V4 的变化。

对于最大值的开关检测,如果V1 >Vref1,则Vp 开始进入第一次电压翻转。这里Vref1是参考电压:

 

 

对于第一次电压翻转(从V1 变到V2),Cp ,C1,Li和r 组成了一个RLC 放电回路,它的品质因子为:

 

 

V2 和V1 的关系可表示为:

 

 

在第一次翻转后,如果V2 < Vref2,Vp 将又会翻转。

 

 

对于第二次翻转( 从V2 到V3 ),Cp ,CCE,Li 和r串联形成一个RLC 放电回路,它的品质因子为:

 

 

就可以得到V3 和V2 的关系:

 

 

假设C2 的放电是在电压Vp 的两次翻转之后,电荷中和就可以被当成一个独立的阶段。在电荷中和阶段,Cp ,C1 和C2 上的总电荷是要被放掉的。考虑到电荷守恒,则V4 和V1,V2,V3 的关系如下:

 

 

电荷中和结束后, 自然充电阶段又开始了。在剩下的半个周期内,直到Vp 达到-V1,最小值开关开始工作。由于两次翻转和电荷中和阶段的时间远小于半个振动周期,所以Vp 的值可以近似为Vp,oc 在开关时刻的值,所以这个阶段的电压关系如下:

 

 

结合线性方程(9),(13),(15)和(16),可以得出V1到V4 关于VOC和VDC的解。

3.2.3 功率分析

根据(2) 和(3) 可以得出SS-SSHI 电路的能量采集功率为:

 

 

这里f0 =ω / 2π 是振动频率。

由于精确计算V1,V2,V3,V4 的数值解较困难,所以采用等效法近似计算功率。考虑到电路第三阶段和第四阶段电压的变化较小,即图7 中V2 到V3,V3 到V4 变化相对于V1 到V2 的变化特别小,所以我们可以认为V2= V3 = V4,此时(17)可以近似为:

 

 

又由于Rp 的值一般都特别大,为数十兆或者更大,所以(16)可以近似为:

 

 

这样结合式(9)和(19)就可以得出V1 和V2,带入式(18)就可得出SS-SSHI 电路的能量采集功率。

 

 

4 实验与结果分析

4.1 实验系统与实验方法

为了验证SS-SSHI 电路的能量采集效果,我们设计了如图12 所示的实验系统。图中器件分别为1. 函数信号发生器、2. 示波器、3. 激振器、4. 压电陶瓷片、5. 激振器驱动电源、6. 能量采集电路。

 

 

图12 能量采集系统

在实验中首先由信号发生器产生谐波激励信号,并输入至激振器驱动电源,用以驱动激振器以某一频率振动,继而带动安装在激振器上的压电悬臂梁振动,通过正压电效应,把机械能转化为电能,并依靠能量采集电路进行能量采集,最后通过示波器来观察能量采集效果。

整个系统的主要参数如表2 所示。一般为了使采集的能量最大,都选择在压电体(悬臂梁) 的共振频率处激振,此时压电体( 悬臂梁) 可产生更大形变,增大输出功率。由于悬臂梁的固有模态比较高,为了降低谐振频率,实验中在悬臂梁的末端附加一个10gn 的质量块(砝码)。为了观察谐振效果下的能量采集效率,本实验选用了悬臂梁的一阶模态频率f =22.3 Hz 作为激励源信号的频率。

 

 

仿真电路图5 中所示的电子元件的具体参数详见表3,在实验中我们通过选用不同阻值的电阻来模拟不同的负载,然后通过示波器分别观察SS-SSHI 电路和SEH 电路在负载端输出的电压,这样就可以根据前文所述的理论求得它们实际的能量输出功率。[!--empirenews.page--]

 

 

4.2 实验结果分析

我们可以通过示波器观察SS-SSHI 电路的工作状态,其结果如图13 所示,图中给出了能量采集压电片两端电压Vp 的变化曲线和信号发生器输入的谐波激励信号。结果表明SS-SSHI 电路实现了最大(最小)位移处的电压翻转,达到了设计预期。

 

 

图13 SS-SSHI 电路工作电压曲线

根据前述理论,尽可能提高电路的输出功率是我们研究能量采集电路的主要目的。通过式(4) 和(20) 我们可以计算SEH 电路和SS-SSHI 电路的实际输出功率。但在求SS-SSHI 电路功率时需要知道相位差φ。为了测得该参数,我们在悬臂梁正反两面对称粘贴两片压电片,其中一片用于能量采集,另一片则是作为传感器,依靠其输出电压确定位移极值处所对应的时刻,通过对比两片压电片的波形就可以确定φ 值。通过实验我们发现φ 值会随着不同负载的变化发生细小的变化,符合文献[13] 中认为φ 是固定不变的假设。在本实验中测得相位差异φ =2π / 11。由此,根据式(4)和(20),我们可以得到开路电压幅值VOC,org = 10.3 V 时SS-SSHI 电路和SEH 电路的理论功率曲线如图14 所示。

为了和理论结果进行比较,分别采用多个电阻进行实验研究,不同的负载会导致电路输出不同的直流电压VDC ,根据阻值大小,由公式P =U2 / R 可计算实际输出功率。图14 表明,两种电路的实测功率与理论分析结果相吻合,尤其是本文给出SS-SSHI电路的功率理论计算结果与实测值非常接近。

 

 

图14 理论和实验功率曲线

为了进一步对比不同振动水平下,采集电路输出功率的提高幅度,本文还开展了开路电压VOC,org =2.6 V 和VOC,org = 6.5 V 时的两组实验,结果如图15所示。

 

 

图15 不同开路电压下的能量采集功率

由图15 可知:在振动幅度较小时,压电片两端的开路电压幅值VOC,org = 2.6 V( 如图15( a)),此时SS-SSHI 电路在R = 50 kΩ 时功率达到最大, 即0.007 mW;而SEH 电路R = 180 kΩ 时功率达到最大,即0.008 mW。可知SS-SSHI 电路的能量采集效率和SEH 电路的能量采集效率相似。随着振动幅度增大,开路输出电压亦增大,SS-SSHI 电路的优势逐渐表现出来,在VOC,org = 6.5 V 时如图15( b),SSSSHI电路在R = 30 kΩ 时功率达到最大:0.110 4mW;而SEH 电路R =70 kΩ 时功率达到最大:0.083mW。此时SS-SSHI 比SEH 能量采集功率提高33%,而在VOC,org =10.3 V 时如图15(c),SS-SSHI 电路在R = 30 kΩ 时功率达到最大:0.415 4 mW;而SEH 电路R =70 kΩ 时功率达到最大:0.208 5 mW。此时SS-SSHI 比SEH 能量采集功率提高99.23%。由此可见SS-SSHI 电路更适合高输入电压情况下的能量采集。

5 结论

微能源越来越受到人们的重视,而振动能作为最常见的能量存在形式受到人们的重视。压电元件以其独特的优势使得它在振动能量采集方面得到广泛应用。

本文首先对压电振动能量采集系统进行电学模型等效建模,紧接着简单分析了传统的标准能量采集电路SEH 的工作原理和采集效率。简要阐述了SSHI电路的工作原理并针对其开关控制需要额外功能的缺点设计并实现了一种自感知的能量采集电路SSSSHI。这种SS-SSHI 电路不需要任何外界额外的能量供给就能实现开关的自行通断,在振动位移(电压)达到最大值或最小值时,开关打开使得压电元件上的能量通过整流桥流入负载来达到能量采集的目的。通过理论分析和实验验证,这种SS-SSHI 电路能够显著地提高能量采集功率,在VOC,org = 10.3 V 时,SS-SSHI 比SEH 能量采集功率提高达99.23%。实验同样表明在大输入电压情况下SS-SSHI 电路的能量采集功率比SEH 电路的能量采集功率更能得到显著的提高。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭