当前位置:首页 > 电源 > 电源-能源动力
[导读]日本文部科学省为削减温室气体制定了研究开发战略,科学技术振兴机构(JST)在该战略的指引下正在推进“尖端低碳化技术开发(ALCA)”,2016年2月召开了有关该项目的

日本文部科学省为削减温室气体制定了研究开发战略,科学技术振兴机构(JST)在该战略的指引下正在推进“尖端低碳化技术开发(ALCA)”,2016年2月召开了有关该项目的开发领域之一“新一代蓄电池”的技术说明会。日本东北大学和关西大学通过演讲介绍了旨在实现锂硫(LIS)电池的新基础技术的开发情况。

作为“后锂离子电池”的有力候补而在积极研发的是LIS电池。此次说明会上介绍了多项为实现LIS电池而正在开发的基础技术。其中之一是日本东北大学原子分子材料科学高等研究机构的教授折茂慎一和讲师宇根本笃领导的研发小组所开发的固体电解质。其电解质采用络合氢化物,在LIS电池上的应用备受期待。

LIS电池是正极材料采用硫、负极材料采用金属锂的电池。硫作为正极材料的理论容量密度约为1670mAh/g,是锂离子电池正极材料常用的三元材料的6倍以上。另外,金属锂作为负极材料的理论容量密度为3861mAh/g,是锂离子电池常用的负极材料碳(372mAh/g)的约10倍。能量密度有望较目前的锂离子电池大幅提高。

不过,LIS电池存在的问题是,如果电解质采用锂离子电池常用的有机电解液,则电池容量会随着充放电循环显着减少。在电池的充放电反应过程中生成的硫与锂的中间体化合物会溶到电解液中,在负极侧发生反应,导致用于充放电的硫的数量大幅减少。

改变电解质或碳材料

对此,考虑的对策之一是,利用比液体稳定的固体电解质来防止硫溶出。东北大学的研发小组正在开发可用于这种固体电解质的络合氢化物。

该研发小组之所以着眼于络合氢化物,是因为这种物质用于电池时的稳定性较高。宇根本介绍说,“此前硫化物和氧化物作为固体电解质被广泛研究,虽然有离子导电度非常高、可以用于电池的类型,但具备电池工作所需的稳定性的类型并不多”。  络合氢化物是指,由金属阳离子M(Li+、Na+、Mg2+等)和络阴离子(M‘H)n〔(BH4)-、(NH2)-、(AlH4)-、(AlH6)3-等〕构成的M(M’H)n物质。在150℃的高温下也不容易热分解,构成元素可以使用轻元素,只需在室温下单轴加压即可制造精密的电解质。不过,离子导电度较低,工作温度高。

例如,目前的电解液离子导电度为10-2S/cm以上(室温)。而络合氢化物之一的硼氢化锂(LiBH4)在390K(约120℃)温度下的离子导电度为2×10-3S/cm以上,在室温下约为10-7S/cm(图1、2)。该研发小组通过将BH4离子〔(BH4)-〕的一部分换成碘离子,将室温下的离子导电度提高到了10-5~10-4S/cm左右。不过,宇根本称,“要想实现与目前的锂离子电池相同水平的能量密度和输出密度,需要提高至10-3S/cm左右”。该研发小组除了LiBH4以外,还在探索其他多种络合氢化物。Li2B12H12(在60℃下为10-4S/cm左右)以及LiNH2和LiBH4的化合物等也是候选。

 

 

图1:试制的块状全固体锂硫电池的性能评测

东北大学教授折茂等人的研发小组开发。正极采用硫,容量密度高达800mAh/g(第20次)。

 

 

图2:试制的块状全固体TiS2/Li电池的性能评测

东北大学教授折茂等人的研发小组开发。正极采用TiS2,以0.2C能反复充放电300次以上。

实际上,该研发小组运用络合氢化物耐热性高的特性,与日立制作所共同开发了可在温度较高的发动机舱内使用的锂离子电池的基础技术。将该技术用于锂离子电池,在150℃的高温下也能维持理论容量90%的容量(图3)。

 

 

图3:实现高耐热锂离子电池的基础技术

东北大学教授折茂的研发小组与日立制作所共同开发。左为电池结构。右为电池电压与电池容量的关系。利用新技术(①+②)可确保理论容量90%的电池容量。

其中的重点是,通过把络合氢化物LiNH2与LiBH4的混合物层夹在正极层与固体电解质层之间,防止了二者之间伴随充放电时的体积变化而发生的剥离现象。另外,在作为正极材料使用的三元活性物质的粘合剂中采用了Li-BTi-O(锂-硼-钛-氧)类氧化物,防止了正极材料与LiBH4接触发生分解反应。

另外,为了防止LIS电池的硫溶出,关西大学化学生命工学部教授石川正司和副教授山县雅纪领导的研发小组开发的方法是,改变利用正极而非电解质吸附硫的碳材料。山县称,“如果使用具备1nm以下直径细孔的碳材料,流入细孔中的硫就不容易出来”,由此能防止硫随着充放电循环而减少。

该研发小组除了这种碳材料外,还通过为硫正极粘合剂使用海藻酸钠提高了LIS电池的输出功率。采用海藻酸钠的一种——海藻酸镁作为粘合剂使用。利用海藻酸镁将硫-活性炭复合活性物质与导电助剂乙炔黑凝固到一起,制成正极材料。负极材料采用锂金属、电解质采用某种离子液体(仅利用阳离子和阴离子等离子构成的低熔点盐)试制的LIS电池,以0.5C充放电循环15次后,维持了约900mAh/g的高容量。采用其他离子液体作为电解质,还有充放电循环70次后仍能维持约900mAh/g高容量的类型,以及可以在2.0C下作为电池动作的类型。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭