当前位置:首页 > 电源 > 电源-能源动力
[导读]接《关于锂离子电池浆料的理论知识(上)》,继续介绍。3,流变学流变学自16世纪开始萌芽,直到1928年美国物理化学家宾汉(E. C. Bingham)及巴勒斯坦学者雷纳(Refiner)命名流变

接《关于锂离子电池浆料的理论知识(上)》,继续介绍。

3,流变学

流变学自16世纪开始萌芽,直到1928年美国物理化学家宾汉(E. C. Bingham)及巴勒斯坦学者雷纳(Refiner)命名流变学(rheology)开始将流变学变成一门独立学科。

经典力学中,将流动与变形划分为两个不同范畴的概念,流动为液态属性,变形则为固态属性。但是经典力学的定义并不适合实际的材料使用,许多制品在变形中会产生黏性损耗,流动时具有弹性记忆效应,这类材料同时具备固体变形和液体流动的特性,在不同的外界环境下,表现出不同程度的流变性质。

对于简单流体或简单弹性体,流变性质表现主要为三种形式:虎克弹性、宾汉塑性、牛顿黏性。拉伸流动与剪切流动均属于简单流动,然而流体流动的方式并不仅限简单流动。稳定的剪切流动类似于流体处于两块平行板间的流动,若在平行板间施加作用力,流体即产生流动速度梯度,流体内任一y坐标流体流动的速度υy正比于其坐标y:

 

 

则剪切引起的剪切速率γ为:

 

 

由于υ=u/t,其中u为位移,则速度梯度可写为:

 

 

要保持流体作上述剪切流动,须施加应力克服各层流体流动时的摩擦阻力,不同的流体阻力并不相等。若将剪切应力对剪切速率作图,可将流体的流变行为略分为四种类型:牛顿流体、假塑性流体、膨胀性流体及宾汉流体。描述中等剪切速率下的黏性流体方程最简单的流体模型为:

 

 

K为流体常数因子,K愈大时流动阻力愈高;n为流体指数。对于大多数流体而言,剪切速率γ在并不是太广泛的范围时可视为常数。因此,

当n=1时,流体为牛顿流体;

当n<1时,流体为假塑性流体;

当n>1时,流体为膨胀性流体。

但是实际的流动曲线n 值并不一定为定值,流体曲线可能具有混合性的流体性质,但在局部剪切速率范围中,n值可为一恒定值。

 

 

流体的流变行为

3-1,牛顿流体(Newtonian Flow)

1687年牛顿首先提出流体阻力正比于两部份流体相对流动的速度。简单的描述牛顿流体,流体黏度随温度的上升而下降,并且黏度不会随剪切速率的改变产生变化,应力与应变速率之间符合简单的线性关系,意指剪切应力将与剪切速率成正比,即:

 

 

(11)式为牛顿流体的定义式。水、酒精、油类等低分子液体均属牛顿流体。牛顿流体的流动一般具有以下特点。

1.变形的时间依赖性

线性黏性流动中,当达到稳定态时,剪切速率不变。若以变形观点而言,则:

 

 

即流体的变形随时间不断发生,具有时间依赖性。

2.流体变形的不可回复性

变形不可回复性为黏性流体的特质,黏性流体的变形是永久变形。外力移除后,变形保持与施力状况下相等,由于粒子或分子链间己产生相对滑移,所以此种变形并无法回复。

3.能量损失

外力对于流体所做的功会转变为热能而散失,此特性与弹性变形完全相反。

4.正比性

线性黏性流动中应力与应变速率成正比,黏度与应变速率无关。

3-2,假塑性流体(Pseudoplastic Flow)

多数的溶液、熔体都属于假塑性流体,在高剪切速率下的黏度甚至可比低剪切速率少几个数量级。假塑性流体又称为剪切致薄流体,其流体行为是随剪切速率提升,溶液的黏度将随之下降。此种流体有助于加工成形,因此在工业制造具有重要的意义。

Herschel-Bulkley equation 时常被用以描述假塑性流体行为:

 

 

低剪切速率下,物理破坏较少,胶体的基本结构基本不变,但当剪切速率达到定值以上,溶液内粒子的结构被破坏或具有方向性时,黏度值开始下降,显示为假塑性现象。而当剪切速率持续增加,物理交联点完全被破坏不及重建,胶体内的粒子可能被分散或是纤维具有方向性等原因,使黏度值将降至最低值而不再变化,在高剪切速率下流体可能接近牛顿流体性质。

3-3,膨胀性流体(Dilatant Flow)

膨胀性流体与假塑性流体呈现相反的特性,流体黏度随着剪切速率增加而提高,又称为剪切致厚流体。此种流体在低剪切速率下具有流动性,然而在高剪切速率作用下,将致使黏度大幅提升。膨胀性流体一般具有以下特性:低剪切情况下,颗粒较趋分散态,受分散介质的浸润性较低;当剪切应力提高,颗粒会形成交联态,虽然结合力并不稳定,却升高了粒子的流动阻力,但由于结合力低之故,经静态松弛后的黏度仍会下降。如糊状物、淀粉、高分子凝胶等属于膨胀性流体。

3-4,触变性流体(Thixotropic Flow)

剪切速率保持不变,而黏度随时间减少的流体为触变性流体。触变作用相当普遍,假塑性流体具有时间依赖性,当剪切速率上升与下降曲线不重合时,将形成一个迟滞圈,因此触变性流体曲线由速率上升及速率下降曲线组合而成。其所包含的面积被定义为使材料凝胶结构被破坏时所需的能量。

 

 

触变性流体曲线

上图所显示的迟滞回圈表示流体材料内部结构的松弛特征,因此触变性流体必然是具有时间依赖性的假塑性流体,但假塑性流体并不一定是触变性流体。

触变性流体具有以下特征:

1.结构可逆变化,也就是施以外力至系统时具有结构的变化,除去外力后,系统结构会有回复现象。

2.在一定的剪切速率下,应力会由最大值降低到一个平衡值。

3.流变曲线为迟滞回圈。

3-5,动态粘弹性

震荡剪切(Oscillatory shear)可用以检测材料的动态黏弹性质,同时获得材料黏性与弹性的流变行为,利用微小振幅的振荡作用藉此观察材料黏弹反馈,并可以藉此得知与稳态黏弹性之间的对应关系。动态测量通常在小振幅的交变应力下进行,在微小振幅下施以正弦变化的应变:

 

 

(14)式中,γ0 为应变振幅;ω 为振荡角频率(s-1),此值亦可用线频率表示f(Hz)。当施以交变应力后,反馈的应力τ(t)也为正弦变化,且频率相同。但由于材料具有黏弹性,因此存在迟滞效应,使得应力与应变间存在一个相位差δ。

 

 

应力与应变间的相位角差

应力反馈为:

 

 

对于纯弹性材料,将反馈所有的能量,因此δ=0,应力与应变间无相位角差;

对于纯黏性材料而言,能量将完全散失,δ=π/2;而黏弹性材料则介于两者之间,0<δ<π/2。参照普通弹性模量的定义,定义复数模量为:

 

 

G’(ω)称为储存模量(modulus)或弹性模量(elastic modulus),而G”(ω)称为损失模量(loss modulus)或黏性模量(modulus)。

动态模量为:

 

 

因此损耗角为:tanδ = G"/G′

当G’ = G”时,δ=45°,此时表示材料流变性质转换,由固态转变为液态或由液态转为固态。

此交点的对应值ω,其倒数便为特性时间(t)。当特性时间愈长,则流体倾向于黏性(浆料分散态),而特性时间愈短,流体趋向于弹性(浆料凝胶态)

 

 

动态黏弹模数的三角函数关系

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭