当前位置:首页 > 电源 > 电源-能源动力
[导读] 1 引言本文针对户用光伏发电系统的特点和要求进行了系统的研究与设计。将独立逆变与并网逆变相结合,使系统既可以工作在独立逆变状态, 将储存在蓄电池组中的能量直接逆变

1 引言

本文针对户用光伏发电系统的特点和要求进行了系统的研究与设计。将独立逆变与并网逆变相结合,使系统既可以工作在独立逆变状态, 将储存在蓄电池组中的能量直接逆变为正弦交流电为负载供电, 也可以工作在并网逆变状态, 将太阳能量直接回馈到电网或者将储存在蓄电池中的多余能量回馈到电网。系统采用32位DSP芯片TMS320F2812构成控制核心,利用单片机PIC16F877A构成系统的人机界面。设计的系统具有完善的保护功能、键盘通讯和液晶显示功能, 为家庭使用提供了方便。实验结果验证了方案的可行性,本文针对独立与并网的双重功能进行了研究与设计,实验结果证明了设计方案的可行性。

2 系统结构


逆变系统是将直流电变换成交流电,其核心是逆变电路,即通过电力电子器件的开通与关断,完成逆变功能。电力电子器件的开通与关断需要合适的控制信号。根据系统的实际需要,本文所设计的逆变系统主要由主电路、控制电路、保护电路、通讯电路、辅助电源、输入滤波、输出滤波等几部分组成。逆变系统采用的基本结构框图如图1所示,控制核心选用TI公司TMS320F2812 DSP芯片。

3 主电路结构及参数设计

逆变器的主电路结构形式多种多样,根据本系统的控制目标,采用单相全桥型带有工频隔离变压器的主电路结构,输入端加入了防反二极管与限流电阻,主电路原理图如图2所示。

当工作在独立逆变模式的时候,采用LC滤波;当逆变器工作在并网模式的时候,为了减少电容滤波对相位的影响采用L滤波,将电容C通过开关断开。


考虑到容量与频率等因素,系统主电路的开关管选择电力MOSFET。其中,滤波电感的选择要尽可能滤除调制波的高次谐波分量,提高输出波形质量,滤波电感的高频阻抗与滤波电容的高频阻抗相比不能过低,即滤波电感的感值不能太小。为满足输出波形质量,要求一个采样周期中,电感电流的最大变化量小于允许的电感电流纹波△ILfmax。滤波电容的作用是和滤波电感一起滤除输出电压中的高次谐波,从而改善输出电压的波形,滤波电容越大输出电压的THD值越小。然而从电路来看,在输出电压不变的情况下,增大滤波电容会使滤波电容的电流增加,逆变器的无功能量增大,损耗增加,效率降低,因此,滤波电容又不宜太大。所以,滤波电容的选取原则是在保证输出电压的THD值满足要求的情况下,取值尽量小。同时应尽可能使用高频特性较好、损耗较小的CBB电容[4]。本文设计的逆变器的功率器件开关频率为15kHz,设计截止频率fC为2kHz。考虑到系统裕量,经计算与综合考虑,选择滤波电感9mH,滤波电容3μF。

4 控制电路结构及控制策略

控制电路主要包含:信号检测电路,驱动电路,保护电路,通讯电路四个部分,如图3所示。


控制策略主要采用PI控制。其中,独立逆变采用电压平均值外环和电压瞬时值内环的双闭环控制方案,实现电压的稳定输出;并网逆变采用CVT型最大功率点跟踪,通过电压的实时跟踪产生电流内环的参考电流,电流内环采用瞬时值反馈实现对并网电流的跟踪控制,实现太阳能量馈入电网。

4.1独立逆变控制

独立逆变采用电压平均值外环、电压瞬时值内环反馈的双闭环控制系统,控制框图如图4所示。其中,电压平均值外环调节器为PI调节,电压瞬时值内环调节器为P调节。输出电压平均值反馈值Uf和电压给定信号Ug的误差经过PI调节器形成电压内环的幅值给定,然后乘以离散的正弦表格数据,形成离散的正弦电压信号作为电压瞬时值内环的给定,电压瞬时值给定值与反馈值的误差信号再经过P调节器产生PWM控制信号,将此信号写入到DSP内部的比较寄存器CMPR1、CMPR2,与三角载波比较后产生4路PWM1~ PWM4开关信号,控制主电路中功率器件的通断。产生的高频SPWM信号经过输出LC滤波器滤波后产生标准的正弦波输出电压,然后经升压变压器升压至220V/50Hz,保证了输出电压的稳定。

4 独立逆变控制框图

4.2 并网逆变控制

(1)太阳能光伏并网

并网逆变采用直流电压外环、并网电流内环控制策略。其中,直流电压外环采用PI调节器实现太阳能光伏组件的最大功率点跟踪,其输出为并网电流的幅值给定。系统首先检测电网电压频率、相位,经过锁相环节使并网电流与电网电压同相位,并网电流给定值乘以离散的正弦表格数据作为并网电流给定值 ,电流内环调节器采用P调节器。将P调节器的输出值写入CMPR1、CMPR2,与三角载波比较后产生4路PWM1~PWM4信号,控制主电路中功率器件的导通与关断,产生的高频SPWM信号经过电感L滤波后产生与电网电压同相位的标准正弦并网电流,经电感L滤波后向电网输入同频同压的并网电流,并网逆变控制框图如图5所示。


(2)蓄电池并网

为了将蓄电池中多余的能量回馈到电网,必须使系统工作在蓄电池并网状态。在这种状态下,并网电流大小是由蓄电池的放电曲线决定的[8]。为了合理保护蓄电池,防止放电电流过大和蓄电池过放,本文通过实时采样蓄电池的端电压和放电电流,将蓄电池能量回馈到电网。蓄电池并网控制框图见图6所示。


5 通讯部分

通讯部分主要是完成系统的状态显示与参数设定,本系统中上位机采用Microchip公司生产的8位单片机PIC16F877A,它与TMS320F2812的串口通讯采用RS-485通信协议,通过两个MAX485芯片来实现两者的数据交换,通讯原理示意图如图7所示。



6 系统软件设计

系统的软件采用模块化设计,主要包括四个部分:主程序,定时器中断程序,捕捉中断程序,功率保护中断程序。其中,主程序主要是检测装置的运行状态是否正常及上位机发来的命令,同时等待中断的到来;定时器中断主要是完成AD检测及SPWM的产生;捕捉中断主要是完成并网逆变中的锁相目的,保证并网电流与电网电压同步。

7 实验结果与结论

逆变器处于独立逆变时,带电阻性负载,输出功率约为210W,逆变器输出电压、电流波形如图8所示。逆变器处于并网模式工作时,并网电流与电网电压波形如图9所示,图中紫色为电网电压波形,绿色为并网电流波形,两者同频同相,实现了并网的单位功率因数。


由图8可知,逆变器工作在独立逆变状态时,可以输出理想的正弦电压波形;从图9可知,逆变器并网时的输出电流与电网电压基本同频同相,实现了并网时的单位功率因数。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭