当前位置:首页 > 电源 > 电源-能源动力
[导读]1.非隔离光伏并网逆变器1.1光伏并网发电系统光伏发电对世界能源的贡献逐年增大,这有目共睹。IEA PVPS的数据显示,2009年该项目成员国共安装光伏容量6.2GW(全球安装约7GW

1.非隔离光伏并网逆变器

1.1光伏并网发电系统

光伏发电对世界能源的贡献逐年增大,这有目共睹。

IEA PVPS的数据显示,2009年该项目成员国共安装光伏容量6.2GW(全球安装约7GW),其中超过95%为并网系统,如图1。

图1光伏发电对世界能源的贡献逐年增加

数据来源:IEA PVPS,International Energy Photovoltaic Power Systems Programme

1.2光伏发电系统

光伏发电系统由光伏电池阵列和并网逆变器组成(如图2)。其中并网逆变器对发电系统的性能和成本起着重要的决定作用。

按照是否带变压器,并网逆变器可以分为隔离型和非隔离型,包括:工频隔离并网逆变器、高频隔离并网逆变器、非隔离并网逆变器(单级式和多级式)等。

工频隔离并网逆变器(如图3)具有电气隔离、消除电流直流分量等优点,但体积重量大、价格高,只有94%—96%的系统效率。

高频隔离并网逆变器(如图4)具有电气隔离、体积、重量、成本降低等优势,但系统效率只有90%—95%。

非隔离并网逆变器分为单级式非隔离并网逆变器和两级式非隔离并网逆变器。单级式非隔离并网逆变器适合更高PV电压和功率;而两级式非隔离并网逆变器适合宽电压范围的PV阵列,它们都具有98.8%的最高效率,体积小、重量轻、成本低,但其缺点是电池板和电网之间出现电气连接。

图2光伏发电系统的组成结构

图3工频隔离并网逆变器结构图

电气连接为漏电流提供了流通路径,是高效率的非隔离光伏并网逆变器应用的最大障碍。漏电流问题会产生寄生电容150nF/kWp,引起开关频率共模电压源。目前大多采用电路结构SPWM调制的策略。

图4高频隔离并网逆变器

2.非隔离并网逆变器常用电路拓扑

过去,我们常采用双极性SPWM调制的全桥并网逆变器(图5为其拓扑结构),因为其效率不高,常应用在小功率场合,而且没有专利壁垒。

图5双极性SPWM调制的全桥并网逆变器的拓

这里我们要介绍几种具有专利的拓扑结构。

2.1 Sunways公司的专利拓扑(图6)

单相两级式系列:AT 2700/3000/3600/4500/5000:

单相单级式系列:NT 2500/3700/4200/5000;

三相两级式系列:Three-phase IxIT 10000/11000/12000。

图6 Sunways公司的专利拓扑

2.2 SMA公司的专利拓扑(图7)

单相两级式系列:SB3000TL/4000TL/5000TL;

单相单级式系列:SMC6000TL /7000TL /8000TL

/9000TL /10000TL /11000Tlo

图7SMA公司的专利拓扑

2.3半桥型拓扑

二电平SPWM半桥无专利壁垒,因而被广泛采用;此外,还有单极性SPWM三电平半桥。

3.改进型全桥非隔离光伏并网逆变器

先来看单相并网逆变器的漏电流分析的模型(如图8)是如何解决单相并网逆变器的漏电流问题的。

滤波支路:受进网滤波器、EMI滤波器和电网寄生参数支配,对共模电流回路阻抗起主导作用;

寄生支路:由桥臂中点寄生电容构成,对共模电流回路阻抗起影响作用:

我们通过单相并网逆变器的漏电流分析模型(如图9)归纳出两种消除漏电流的途径:

(1)在电路和寄生参数对称的前提下(即满足

图8单相并网逆变器的漏电流分析的模型

图9单相并网逆变器的漏电流分析的模型

VCM-DM:0),SPWM开关方式产生的VCM电压为恒值;

(2)SPWM开关方式产生的VCM电压为高频时变时,通过电路参数匹配使得VCM+VCM-DM=consto。

全桥类单相并网逆变器漏电流抑制技术包括:

(1) 在电路和寄生参数对称的前提下(即满足VCM-DM:O)SPWM开关方式产生的v电压为恒值。

常见电路有以下几种:

带交流旁路环节的全桥电路;

带直流旁路环节的全桥电路;

带直流侧旁路箝位的全桥电路;

基于功能和效率优化的改进型全桥电路。

加入一支可控开关管和分压电容构成双向箝位支路。

4.理论分析与实验研究

4.1电路结构与驱动时序

主电路结构SPWM和驱动时序工作模态为电流正半周和电流负半周。

电压箝位工作是续流阶段中点电压随电网电压波动,提升中点电压或降低中点电压。

4.2功率器件损耗分析与计算

以光伏电压500V、功率5kW等级为例(如图10),我们在如下实验条件进行研究。

输入电压:340—700VDG

光伏寄生电容:2×0.1 u F

电网:220V/50Hz

进网滤波器:4mH+6.6 u F

功率:1kW

开关频率:20kHz

以下罗列了4种电路实验形式:

A: Haric

B:H5

C: H6

D: Optimized H5

图1 0功率器件损耗分析与计算

图1 1实验A:Haric

5.结论

非隔离型光伏并网逆变器具有效率高、体积小重量轻等优点;

根据桥式非隔离光伏并网逆变器漏电流分析模型,我们可以得出两条抑制开关频率漏电流的途径;

我们希望提出一种改进型全桥非隔离光伏并网逆变器拓扑,可以实现对漏电流性能和变换效率进行优

化。

图12实验B:H5

图13实验C: H6

图14实验D:Optimized H5

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭