当前位置:首页 > 物联网 > 网络层
[导读]摘要:对一起由于测控装置同期开入回路受到电磁干扰后误动,造成主变压器中压侧断路器误合闸的严重事故进行了详细分析,并说明了电磁干扰使得光耦元件“瞬态饱和”的现象和原理,指出了测控装置设计不当的

摘要:对一起由于测控装置同期开入回路受到电磁干扰后误动,造成主变压器中压侧断路器误合闸的严重事

故进行了详细分析,并说明了电磁干扰使得光耦元件“瞬态饱和”的现象和原理,指出了测控装置设计不当的

地方,并由制造厂家进行了改进。

关键词:测控装置;电磁干扰;瞬态饱和;误合闸

近年来,综合自动化技术在变电站中得到了广泛应用,微机保护和微机测控装置是实现变电站综合自动化的基础,但微机化的二次设备都是低电平

的弱电系统,在内部时钟节拍控制下,以极高的速度工作,它们的工作环境是电磁干扰极其严重的强电场所,很容易受到干扰而误动或拒动_1]。本文将

详细分析一起测控装置因干扰误动导致断路器误合闸的事故,希望对设备制造厂商能有所启发,开发出更加可靠的产品。

1 事故经过

2005年12月22日,某220 kV变电站1号主变压器综合自动化改造结束后,在启动过程发生变压器中压侧101断路器误合闸,具体过程如下:

13:51:38,监控系统遥控合上变压器高压侧2201断路器,对1号主变压器进行充电;

14-()():12,监控系统遥控合上变压器中压侧101断路器,1号主变压器带上负荷,这时发现变压器高压侧V相套管漏油;

14:01:19,运行人员在监控系统遥控跳开变压器中压侧101断路器;

14:01:45,运行人员遥控跳开变压器高压侧2201断路器;

14:04:46,变压器中压侧101断路器在无人操作的情况下发生误合闸,造成i号主变压器误上电;

14:05:59,运行人员遥控跳开101断路器。由于101断路器的误合闸造成套管漏油处放电产生火花,险些酿成大祸。事故发生后,现场调度下令停止启动工作,把i号主变压器转为检修状态。调试人员按照以 开关分合顺序重新操作,没有发生101断路器误合闸。

2 原因分析

本次1号主变压器综合自动化改造内容是增加了变压器高压侧2201、变压器中压侧101、变压器低压电容侧701A、变压器低压馈线侧701B四个

断路器的微机测控装置,型号为国电南京自动化股份有限公司生产的PSR651型,每个断路器配置一台微机测控装置,共同组成1号主变压器测控屏,

其中变压器高压侧和变压器中压侧断路器测控装置具有手动合闸同期判别功能。

1号主变压器中压侧101断路器测控装置分合闸回路如图1所示(变压器高压侧2201断路器的原理相同),图中6SA为远方一就地、分闸一合闸控

制开关,6SM 为同期一非同期转换开关,6KGT为光电耦合器,端子6D17,6D18,6D19,6D20接开关操作箱控制电源+220 V,端子6D23接操

作箱手动分闸输入,端子6D27,6D28接操作箱手动合闸输入,端子6D29接操作箱控制电源一220V,端子6D37接测控装置同期CPU 板开入+24 V 。

遥控合闸过程:控制开关打在“远方”位置,这时6SA的15—16,19—2()导通,测控装置接收到监控系统遥控合闸命令后,测控装置出口10(图

1中oUT1())动作,节点闭合时间设定为12()ms,如果同期转换开关处于“非同期”(6SM 的7—8导通),控制电源+220 V接至6D28合闸输入;如果同期转换开关处于“同期”(6SM 的1—2导通),控制电源+220 V接至6KGT,6KGT动作,测控装置同期CPU板接收到同期合闸开入命令,然后同期CPU判断同期条件,如果条件满足,同期CPU板出口2(图1中OUT2)动作,控制电源+220 V接至6D28合闸输入完成合闸。

手动合闸过程:控制开关打在“就地” 位置,这时6SA的17—18导通,手动操作6SA合闸的过程中6SA的1—2导通,如果6SM处于“非同期”(6SM 的7—8导通),控制电源+220 V接至6D28合闸输入;如果6SM 处于“同期”(6SM 的1—2导通),控制电源+220接至6KGT,6KGT动作,测控装置同期CPU板接收到同期合闸开入命令,然后同期CPU判断同期条件,如果条件满足,同期CPU板 口2(图1中oUT2)动作,控制电源+220 V接至6D28合闸输入完成合闸。

本站监控系统在每次运行人员操作或设备动作后都会记录下完整的事件顺序记录(SOE)报文,表1、表2就是本次101断路器正常合闸和误合闸的

SoE报文。

从表1可以看 断路器正常遥控合闸过程:

14.()():12.273,测控出口1()动作;

14:00:12.298,101断路器同期开入动作;

14:00:12.311,测控出口2动作;

14:00:12.386,断路器合位动作;

14:00:12.418,1()1断路器同期开入返回。

 

 

101断路器同期开入从动作到返回时间为120ms,就是测控装置设定的 口10闭合时问(120ms),与前面分析一致。

从表2可以看m:14:04:46.476,101断路器合位动作,说明101断路器确实合上,但是没有测控 口10动作记录,说明不是遥控合闸,只有测控出口2动作记录,测控出口2动作的条件是测控装置同期CPU板有同期合闸开入且同期条件满足;14:04:46.371,1()1断路器同期状态动作;14:04:46.377,101断路器同期状态返回,同期开入时间仅持续6 ms。国电南京自动化股份有限公司的技术人员确认只要同期开入达到4 ms,同期CPU板就认为有合闸命令并且开始判断同期条件,如果满足同期条件,测控 口2就动作。因此可以得 结论:造成这次断路器误合闸的罪魁祸首就是这6 ms的同期开入,这么短的时间可以肯定是由于电磁干扰通过光耦元件窜入同期开入回路后造成的i贝4控装置误动作。

 

 

3 光耦器件的“瞬态饱和”现象对不同制造厂家的多种微机继电保护装置的电源端口、交流电流、电压、开关量输入等端口施加瞬变骚扰,即使光耦器件没有任何激励量输入时,其输 波形均 现4()~6()bts的电压跌落。由于这种现象是南瞬变骚扰引起的,因此称为光耦器件的“瞬态饱和”现象。此外,由于瞬变骚扰是周期现的,光耦器件的电压输 也随瞬变骚扰周期而产生跌落。

由于快速瞬变脉冲群的频率很高,达到100MHz,此时光耦器件的高频等效电路如图2所示。一般厂家仅给出光耦器件的原、副方之间的电容(图2中C1)的值,如TLP121光耦器件的电容值为0.8 pF。事实上,光耦器件的原方与副方接收三极管基极之问存在杂散电容(图2中C2)。

高频瞬变骚扰在光耦器件构成的开入量输入回路中传输途径为:幅值极高的瞬变骚扰信号一光耦原方一原方与副方三极管基极之间的电容C2一副

方三极管的基极一集电极一电容C3,C4一大地,致使接收三极管导通,造成光耦器件误翻转,这就是光耦器件在快速瞬变脉冲群干扰下产生“瞬态饱和” 的根本原因。

 

 

4 改进办法

通过上述分析可以断定,这次开关误合闸是由于电磁十扰通过光耦元件窜入同期开入同路造成的,虽然具体的干扰源无法确定,但是测控装置的

同期开入确认时间只有4 ms,这是明 偏短的。另外对测控装置的同期开入回路做开入电压测量试验时发现,同期CPU板虽然采用24 V作为正常

开入电压,但是我们外加4 V电压时,同期开入就会动作,这个电压门槛也明显偏低。

调试人员又做过多次遥控合闸和手动合闸试验,遥控合闸时同期开入从动作到返回时间同定为120 ms,这个时间是由测控装置整定的;手动合闸

时同期开入从动作到返回时间就是人为操作6SA合闸过程的持续时间,这个时问每次都大于200 ms。

为了提高测控装置同期开入的抗干扰能力,在跟厂家技术人员共同研究后,决定首先把同期开入动作电压提高至24 V的55%~7()%,然后把同期

开入确认时间调整为8()ms,保证在同期合闸时有5()%的裕度。经过这样调整后,开关没有再发生误合闸。

5 结束语

变电站的电磁干扰无处不在,微机化二次设备的抗干扰能力是衡量其性能好坏的一个重要指标,因此就要求制造厂家在提高设备抗干扰方面多做考

虑。硬件方面要选用质量好、抗干扰能力强的芯片,软件方面不能一味追求动作速度快,要在速度和可靠性之问找好平衡点。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭