当前位置:首页 > 物联网 > 网络层
[导读]   福冈市与福冈Smart House Consortium于2011年3月17~18日针对正在福冈市进行试验的智能住宅举行了内览会。该智能住宅的特点是,构筑了新型电源控制系统,组合使用太阳能发电及风力发电等发电源和蓄电池,并且


    福冈市与福冈Smart House Consortium于2011年3月17~18日针对正在福冈市进行试验的智能住宅举行了内览会。该智能住宅的特点是,构筑了新型电源控制系统,组合使用太阳能发电及风力发电等发电源和蓄电池,并且可与系统电源的电力自动交换。内览会上展示了多种使用情况,比如,让系统电源的供电量保持为一定值,或者停止太阳能发电,让系统电源和蓄电系统向负荷供电等(图1)。

  具体系统构成为设置了本田Soltec制造的1kW额定输出功率太阳能电池及ZEPHYR制造的1kW小型风力发电机来用于发电。蓄电系统则采用Baysun制造的1kWh锂离子充电电池模块(电压48V)与电装制造的2kWh锂离子充电电池模块(电压288V)。

  电源控制系统由AVAL长崎制造,由可与系统电源双向交换电力的系统连接逆变器、电动汽车用逆变器、向住宅内负荷供电的逆变器、太阳能发电用DC-DC转换器、风力发电用DC-DC转换器,以及2个可与蓄电池双向交换电力的DC-DC转换器(电池增压器)构成。

智能住宅的外观 

 
图1:自动工作的电源控制系统
电源控制系统与蓄电系统安装在19英寸机架中(a)。电源控制系统的各装置由380V的直流总线连接(b)。各装置间的电力交换可在画面上确认(c)。

  各装置均配备数字控制电源,可数字处理并执行开关电源的电压及电流控制。控制用MCU采用美国德州仪器的DSP“C2000系列(Piccolo)”。装置间利用以380V为基准的直流(DC)总线连接,可根据各装置相对于DC总线的电压高低,自动控制电力

使用多个模型库设计电源

  福冈Smart House Consortium在构筑自动电源控制系统时,采用了大量使用模拟的模型库开发,而非原来反复尝试开发法。该方法已应用于汽车行业以缩短开发时间,此次则进一步应用到了电源设计领域。

  电源控制系统的开发连续使用了三个工具。首先是采用崇城大学能源电子研究所所长中原正俊开发的电源电路模拟工具“SCALE”,设计电源电路图。其次,采用美国迈斯沃克(The MathWorks)的“Simulink”,以电路图为基础制作控制部的模型,模拟验证工作。随后,制作实际的电源电路,以对控制逻辑进行验证。采用了德国dSPACE的软件“dSPACE原型系统”。该软件可在采用模型库设计的控制部安装完成后,使其工作,因此可在短时间内进行电源设计。

利用气象数据

 在内览会上,除自动电源控制系统以外,还公开了管理住宅内能源等的“HEMS(home energymanagement system)”的几项关键技术(图2)。比如,日本CSK演示了将IP进行封装后向VHF频带电视信号波发送的“IPDC(IP data cast)”。

 
图2:可远程操作以及与气象数据联动
CSK在智能住宅内公开了使用VHF频带电视信号波,发送IP数据来远程操作设备的演示(a)。在会场,现场演示了使用智能住宅模型,与日本气象的气象数据联动来控制照明,以及为蓄电系统计划性充放电(b)。


  随着模拟电视停播时间的临近,该公司正在推进利用空闲带宽——VHF频带、基于IPDC的信息服务实证试验。此次采用了从福冈塔发送的实际电波,除了在对讲机画面上显示电器的召回信息以外,还演示了台灯的开关控制等。另外,CSK与FM东京在2011年3月底之前进行的实验均获得了日本总务省的批准。

  此外,与日本气象的气象数据联动分四个阶段控制LED照明,以及为蓄电系统计划性充放电的现场演示也备受关注。该演示采用了智能住宅的模型。日本气象能以方圆5公里为单位划分日本全境,预测未来54小时每小时的太阳能发电量。通过这一预测,可构筑效率更高的能源系统。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭