当前位置:首页 > 物联网 > 网络层
[导读]微网(MG)作为智能电网重要组成部分,目前在控制方面还存在一些问题,特别是微网的解列和并网控制。针对并网过程对微网和主电网电能质量的影响,通过研究电网中的频率和功率特性关系,对微网并网过程中的功率流动进行

微网(MG)作为智能电网重要组成部分,目前在控制方面还存在一些问题,特别是微网的解列和并网控制。针对并网过程对微网和主电网电能质量的影响,通过研究电网中的频率和功率特性关系,对微网并网过程中的功率流动进行了详细的分析。最后使用电力系统仿真软件PSCAD/EMTDC对并网过程进行了仿真,通过比较最佳并网时刻前后的不同并网过程,分析了其频率和功率变化的不同。研究结果表明,微网和主电网电压相对相位的不同对并网过程的电能质量有很大的影响。

0 引 言

随着我国对智能电网研究和规划的正式启动, 作为智能电网基础部分的分布式电源(Distributed Generation, DG)越来越受到人们的关注。DG 主要包括微汽轮机、风能、太阳能、燃料电池、生物质能等。其一般和负载一起组成微网, 作为一个可控单元接入主电网。在并网运行时, 微网通过公共连接点和主电网连接, 当主电网发生故障或者电能质量问题时, 微网迅速与主电网断开, 独立向内部负载供电 , 当故障解除、主电网恢复正常后, 微网可以再次和主电网并网运行。为了保证在并网过程中微网和主电网的电压和频率等电能质量指标符合国家标准, 并网过程一定要采取合理有效的控制策略, 保证并网过程的顺利安全进行。

本研究中只考虑并网后电网向微网注入功率, 而微网向电网注入功率的控制在以后的研究中进一步深入探讨。通过PSCAD /EMTDC仿真, 重点研究并网过程的电压和频率波动, 提出安全有效的并网控制方法。

1 典型微网结构

典型微网结构如图1所示, 主要由分布式电源、储能系统、负载和保护装置组成一个低压电网( low voltage, LV), 通过变压器和主电网的中压电网(medium voltage, MV)连接 , 当主电网中发生重大电能质量问题时, 微网控制中心(MicroGrid Control Center,MGCC)控制微网进入孤岛模式运行, 保护微网内部敏感和重要设备。微网的并网是一个复杂的控制过程,在闭合之前需要对一些电能质量指标进行检查, 只有这些指标满足同步并网要求, 才能合上开关接入主电网。

 

 

2 并网后的功率流动

在电力系统中,当功率出现不平衡或者频率发生变化时,频率和功率的调整是由负荷和电源两者的调节效应来完成。系统中的频率和有功功率间的关系为:

$f = - Ks$P = - Ks(P0-P1) (1)

式中Ks系统的频率调节特性;$P系统有功功率的变化;P0、P1不同频率下对应的功率;$f系统频率的变化。

在孤岛模式下,DG提供了微网内部负载所需的所有功率。并网后DG产生功率的多少由微网控制中心的指令决定,微网所需功率的缺额部分再由电网注入。

 

 

图2 孤岛系统的频率-功率特性图

两个孤岛系统的频率-功率特性图如图2所示。在连接之前,DG(A)、DG(B)分别以不同频率独立向各自负载供电,DG(A)的频率为 fa,DG(B)的频率为fb,连接后成为含有两个DG的孤岛。在分开运行时A比B的频率要高,当它们并网连接后只能在同一个频率f0下运行。从图2可以看出,此时A由于频率下降增加了$Pa的功率输出,B由于频率上升减少了$Pb的功率输出,而整个网络的负载没有变化,所以$Pa等于$Pb,并网后功率从A流向了B。同样,如果并网前DG(A)的频率低于DG(B),连接以后功率从B流向了A。这说明并网后功率会从并网前频率高的流向频率低的,所以要使并网以后功率从电网流向微网,必须保证并网前电网频率要稍高于微网频率。

上面这种情况在实际应用中也是很有可能遇到的,当发生重大事故后,所有DG都将和微网分离,在微网重新启动时,DG将依次接入微网。

3 同步并网控制策略

一般来说,并网前两个独立运行的系统,其运行频率很难调整到完全相同。并网前电网电压和微网电压分别为U#g和U#m,电压幅值Ug=Um,频率fgXfm。假设并网后功率从电网注入微网,根据并网后功率流动的分析,fm要稍低于fg,可得开关两侧的电压差Us为:

Us=Ugsin(Xgt+Ug)-Umsin(Xmt+Um) (2)

其中,Xg=2Pfg,Xm=2Pfm

式(2)可变换为:

 

 

式中D)滑差角频率,D=Xg-Xm;B)初相位差,B=Ug-Um。

则式(3)可表示为:

 

 

由于Uk是一个大小波动的值,Us是以2Ug为最大值的脉动电压。

 

 

图3 微网仿真模型图

微网仿真模型图如图3所示,微网含有一个DG和负载,以直流电源通过逆变器产生交流电来模拟DG,微网通过并网开关和主电网连接。假设并网前电网电压为 E#g,微网电压为E#m,根据上面功率流动的分析,要使并网后功率从电网流向微网,并网前电网频率要稍高于微网频率,即E#g的频率稍高于E#m的频率。同时根据上面对电压差的分析得出式(5),可知并网开关两侧的电压差是脉动电压,仿真结果如图4(a)所示。在5.0s时刻的局部放大图如图4(b) 所示,从图中可以看出,5.0s是最合适的闭合开关时刻(这样的时刻是周期性出现的),开关两侧的电压差最小,闭合过程产生的瞬间电流也很小,安全性能比较高。

电压E#g和E#m的对比图如图5所示(点划线是电网电压E#g,实线是微网电压E#m)。综合图4和图5可以发现在5.0s是并网的最佳时刻,但是在实际应用中恰好在5.0s这个时刻闭合开关的可能性很小,往往都是这点的前后合上开关。仔细观察图5可以发现在5.0s前后是两种不同的情况,5.0s之前是E#m超前于E#g,即E#m的相位超前E#g,5.0s之后则是相反的情况,E#g超前于E#m。下面重点分析这一不同点对并网过程的影响。

 

 

微网的总负载是2.0pu,在孤岛模式下由DG提供了全部的功率,而并网后要求DG的输出功率是1.0pu。首先在5.0s之前闭合开关,在这个时间段E#m超前于E#g,就是说频率低的电压相位超前于频率高的电压,同时保证开关两侧的电压差尽量小。在并网过程中DG的输出功率和频率的变化如图6所示。

从图6(a)可以看到,在并网过程中有一段向上的功率输出波动,然后又迅速回到正常水平。因为在并网前后整个系统的总负载没有变化,对微网来说,那些额外产生的功率流向了并网后的主电网。从图6(b)中可见,并网过程中有一段频率突然下降,短时间内产生了激烈的波动。

 

 

5.0s之后闭合开关的情况如图7所示,电压差比较小的时候并网,频率高的E#g超前于频率低的E#m,从图7(a)可以明显地发现功率从2.0pu变化到1.0pu,没有较大的波动,过渡比较平稳。在图7(b)中,频率的过渡同样也是比较平滑。因此如图7所示的情况才是最佳的并网过程,频率和功率波动都比较小,而且由于是在电压差比较小的时刻闭合并网开关,开关中产生的瞬时电流也比较小,整个过程中电能质量得到了有效的保证。

4 结束语

本研究通过对含有一个DG的微网并网过程仿真,研究了并网过程中频率和电压波动变化,着重分析了在并网前开关两侧电压相对相位超前和落后的两种不同情况,提出了微网并网的最佳控制策略

(1)并网时开关两侧的电压差必须很小,理想状态为零;

(2)电网频率必须稍高于微网频率;

(3)并网时刻电网电压必须超前于微网电压。

并网后微网向主电网注入功率的情况在以后进一步进行研究。

更多好文:21ic智能电网

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭