当前位置:首页 > 物联网 > 智能应用
[导读]高效节能与物联网最近,物联网(Internet of Things, IoT)已然变得非常流行,各种连接到因特网以及互相连接的电子设备构成了物联网的世界。物联网所涵盖的范围之广着实令人吃惊——从智能消费电子应用和车

高效节能与物联网

最近,物联网(Internet of Things, IoT)已然变得非常流行,各种连接到因特网以及互相连接的电子设备构成了物联网的世界。物联网所涵盖的范围之广着实令人吃惊——从智能消费电子应用和车辆到可穿戴设备领域的几乎所有事物,而且覆盖范围由于移动应用的爆炸式增长(图1)还将大幅扩大。这些产品以及衍生出的生态系统将改变人们的日常生活。对于个人消费者来说,物联网能够让人们以更低的成本、更高的效率处理日常事物,使得生活更加安全,甚至还能使人们的生活变得更加健康。对于商业领域来说,物联网将为自动化、能源效率、资产追踪和库存控制、物流和定位、安防、个人追踪以及资源节约领域带来极大的变革。

图1:此处为计算得出的增长数据。移动应用正不断推动物联网的成长,而反过来物联网也在不断推动移动应用的发展。

有了这些好处,我们很容易就能理解为什么物联网能够变得这么流行。不过,要想完全获得上述好处,物联网行业必须先要解决诸多关键的挑战,可能目前最为紧要的挑战就是实现高效节能。

定义物联网

最近“物联网”这个词充斥着人们的生活,那么它到底是什么?简单地说,物联网是由形形色色的硬件、软件和服务组成(大部分是后面两者),上述三个部分紧密合作,收集和传输信息、分析数据,然后基于这些数据形成决策,提升特定任务的效率(图2)。例如在个人健康这一块,物联网可以提供一个更加有效的方式将指定药物或治疗的疗效信息传送给医生。而在居家生活领域,物联网能够帮助消费者更高效地使用冰箱,如通知消费者食物是否已经临近保质期,是否需要补充食物,或者在线订购食物并送至家中。

图2:物联网将多个生态体系整合到一起。

构成物联网生态体系的应用涵盖智能家电(如冰箱、烤箱和HVAC系统)和汽车到可穿戴设备领域。尽管它们可能在应用形式和使用方法上并不相同,但上述应用领域具备四项关键的共性:感知、数据收集、互连和数据处理。本质上来说就是物联网设备能够感知事物,然后收集感知到的数据,最后这些数据将通过因特网传输至另外的设备或地点,进行处理或分析。

物联网生态体系中的大多数设备由电池供电,并且必须在没有维护或替换的情况下工作数年。如果仅使用单个电池而要提供长时间的服务,这些设备的功耗就必须要尽可能降到最低。还有一些物联网设备将通过外部来源供电,即能量收集。在上述两种情况中,高效节能对于发挥物联网的潜力,造福大众生活来说都是至关重要的。

实现高效节能:物联网领域的主要挑战

物联网本身是一个很大的概念,能够彻底改变社会生活和人们的工作。实际上,物联网应用的开发正在诸多领域中进行着。在不远的将来,很多事物将和现在的看起来不一样,而且这还不是仅仅局限于消费电子领域。想象一下,像Nike FuelBand 一样通常需要8、9 个元件的可穿戴设备在3 到4 年后可能只需1 个元件,而且价格也会变得更加便宜(图3)。

图3:如何降低功耗、减小尺寸、缩减成本是物联网领域的主要挑战。

消费者对于更小、更轻薄设备的需求不断推动这种趋势,特别是在可穿戴设备领域。“摩尔定律”中所预测的大约18 个月左右晶体管数量就会激增这一情况使得这种趋势变得更加复杂。将8 到9 个元件减少到1 个需要高度的集成。不仅如此,当您将更多的功能集成到单个芯片上时,相应地必须要添加更大的存储器,这反过来也会增加功耗,而这点并不契合物联网设备追求更低功耗的需求。

在未来几年里,物联网将为我们提供非常卓越的用户体验。它将提供更好的互连,更简单更方便,并且是“永远在线”的,或者说给用户带来的体验是“永远在线”的。倘若物联网设备能够“永远在线”,始终待命并执行用户的指令,那就无需摁一下按钮激活设备这种操作了。可穿戴的健康追踪设备是看得见的例子。它每天都记录用户的心率、全天的睡眠/活动时间。未来的物联网设备也需要实现类似的“每周7 天,每天24 小时”的工作。

显而易见的是,对于“永远在线”功能的需求正是推动实现更加高效节能的动力。如果物联网设备不能以很低的功耗运行,无论是通过持续数年的电池供电或从外部获得能源,“永远在线”的想法仍然不能实现。

“永远在线”的设备还处于一个进退两难的困境中。如果一直在工作,物联网设备就会收集到海量的数据,此时如何利用这些数据变成了最优先考虑的事。换句话说,收集数据相对来说很简单,而难的是真正使用好这些数据。

智能感知和大数据分析此时就会变得非常重要,通过更加智能的数据获取并且以更大的数据集进行处理,那么根据需求获得的动态趋势或重要项目就能够最快地得到确定并执行。这里不得不再次提醒,高效节能仍然非常关键,因为数据收集会增加功耗,存储器存储数据同样如此。

克服挑战

实现对于物联网设备至关重要的高效节能,使得设备仅需单个电池就能运行数年并不简单。这需要使用低功耗元件以及更加高效的电源系统。同时,架构和芯片本身也需要进行改变。

现在,物联网领域各个方面的设计都集中于如何尽可能实现高效节能(图4)。对于智能手机来说,这意味着数量级的提升,不会一夜之间就实现。这种提升需要通过几代产品一步一步实现。

图4:物联网领域的方方面面都要求高效节能。

作为低功耗可编程半导体器件的行业领导者,莱迪思半导体致力于助力各厂商实现功耗更低的物联网互连设备。目前,莱迪思主要集中于研究新的方式来提升能源效率,包括实现工艺技术创新和推出更先进的半导体器件。同时,莱迪思也不断为系统设计工程师提供更多的灵活性,以支持电源门控、可编程速率和电源管理功能。不仅仅是低功耗,莱迪思独有的架构还可实现模式状态电源管理,基于某些参数来判断设备所处的真正状态——开启或关闭,睡眠或部分唤醒,能够动态地从一种状态转换到另一种状态。

相较于仅基于处理器的元件,莱迪思正在使用先进的工艺技术和已有的速度/功耗灵活性来扩展其产品功耗优势。利用集成的半导体器件和软件解决方案,莱迪思能够实现能源效率数量级的提升。

物联网是一个引人注目、非常有前途的领域,能够改变人们日常生活的方方面面。现在物联网领域已小有成就,但是发展空间还十分巨大。想要完全发挥物联网的潜力,就要把物联网生态体系中的设备变得更小更便宜,此时更高度的集成就变得至关重要。它还要求设备开发工程师能够为用户带来“永远在线”的体验,并找到新的方式来更加智能地感知和分析设备捕捉到的数据。以下都是该领域中各类应用的共同发展趋势:集成、“永远在线”的用户体验、智能的感知/数据分析。这些趋势也是将物联网生态体系引入到人.们日常生活的过程中面对的最主要障碍。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭