当前位置:首页 > 物联网 > 智能应用
[导读] 引言在真正的物联网智能家居系统中,不应当再按功能划分为各个独立的抄表网、环境网、电控网、安防网等,而只是按传输接口形式和信息流的走向,融合为感知/控制子网。对于具有多主竞争总线接口的模块(如CAN、ZigBee

 引言

在真正的物联网智能家居系统中,不应当再按功能划分为各个独立的抄表网、环境网、电控网、安防网等,而只是按传输接口形式和信息流的走向,融合为感知/控制子网。对于具有多主竞争总线接口的模块(如CAN、ZigBee等),融合为感知/控制子网;而对众多仅具单主总线的RS-485模块,则按信息流的流向,融合成循环检测的感知子网和点控的控制子网。NXP Cortex-M3/M0系列ARM微处理器的优异性能,低廉的价格为这样的设计开发提供了良好的条件。

1 系统体系结构

物联网智能家居系统如图1所示,它实际上是一个分布式测控系统。

它的上层管理网是以太网,用于在广阔的互联网范围内信息共享,其上连接有各种管理、存储及远程控制设备。

它的下层,不再以功能(环境、抄表、安防、电控等)切割分块,而是按信息流走向整合形成感知/控制网。感知网以多主或轮询的方式向上传送信息,而控制网则可采用一主多从方式向下传送控制命令。

在感知/测控网中,按媒体连接型式则有RS-485总线网、CAN总线网、ZigBee总线网、WiFi总线网等。

连接上、下层的是多个嵌入式通信服务器。通信服务器是智能家居中的核心模块,它在整个智能家居系统中不仅起到了上下信息传递的作用,而且进行数据融合、分类以及安全管理,是感知网的管理主机。

2 嵌入式通信服务器

嵌入式通信服务器是智能家居中的核心模块,选用的是NXP公司Cortex-M3系列中的LPC1768处理器。LPC1768处理器是一个低功耗,具有强大功能的32位ARM芯片。

LPC1768单片机内部包含有一个功能齐全的10/100Mbps以太网RMII接口控制器,它可以通过RMII接口(通常简化为媒体独立接口MID外接一个物理接口收发器(PHY),再接上网络变压器和RJ-45接口,就组成了一个完整的以太网通信接口,如图2所示。

PHY芯片选用美国国家半导体公司的DP83848,这是10/100 Mbps单路物理层器件功能,用于为LPC1768芯片提供物理层接口。

以太网MAC,通过RMII接口与片外PHY相连。如图2所示,LPC1768的以太网模块使用RMII(简化MII的媒体独立接口)来连接外部PHY芯片(DP83848)。其中有8根RMII的串行数据总线,还有2根MIIM(媒体独立接口管理)接口管理控制线,从而实现与片外以太网PHY之间的连接。DP83848的复位信号可以共用LPC1708的复位信号。

以太网RMII的引脚信号如下:

①ENET_TX_EN为输出发送数据使能;

②ENET_TXD[1:0]为输出发送数据,2位;

③ENET_RXD[1:0]为输入接收数据,2位;

④ENET_RX_ER为输入接收错误;

⑤ENET_CRS为输入载波侦听/数据有效;

⑥ENET_REF_CLK/ENET_RX_CLK为输入参考时钟用于外部PHY的媒体独立接口管理(MIIM)的信号;

⑦ENET_MDC为输出MIIM时钟;

⑧ENET MDIO为输入/输出MI数据输入和输出。

DB83848通过TD+、TD-、RD+、RD-经隔离变压器、RJ-45口输出,L-、R-驱动LED,指示输入、输出状态。

3 CAN接口及CAN感知网

在智能家居中采用CAN感知/控制子网,这里面有CAN-以太网关、CAN路由器、CAN感知/控制模块。由于CAN-以太网关和CAN路由器需要以太网控制器(MAC)和2个CAN控制器,所以CAN-以太网关、CAN路由器均由Cortex—M3的LPC1768来承担,而CAN感知/控制模块则由Cortex—M0的LPC11C12/24来承担。

3.1 CAN-以太网关、CAN路由器

如图3所示,LPC1768内部集成有CAN控制器,外接CAN收发器就构成了嵌入式通信服务器的CAN通信接口,所以能很方便地构成以太-CAN网关。又由于LPC1768内部集成有2个CAN控制器,因而它支持2个CAN子网,能很方便地构成CAN路由器。

LPC1768的CAN控制器支持控制局域网(CAN),提供了一个完整的CAN协议(遵循CAN规范V2.0B)实现方案,因而它能很方便地兼容/混用过去的SJA1000 CAN系统。

3.2 CAN总线感知/控制模块

CAN感知/控制模块均选用基于Cortex—M0的LPC11C14/24。LPC11C14内部集成有一个CAN控制器,而LPC11C24是在LPC11C14的基础上集成了一个CAN收发器TJF1051。采用LPC11C14/24比过去采用51单片机+TJF1050+SJA1000方式,不仅性能大大提高,而且占用PCB板面积大大减小,芯片材料成本减少了40%。

新旧系统混用最好都采用同样的CAN收发器。由于原CAN系统中CAN收发器芯片采用的是TJF1050,而TJF1051是与TJF1050高度兼容,因而以LPC11C14/24构成的CAN模块和采用51单片机+TJF1050+SJA1000的CAN模块高度兼容/混用。

4 RS-485接口及RS-485感知网

在原智能家居系统中有不少的感知网采用RS-485总线,而且采用的是80C51系列的9位多机通信方式。在新系统中选用Cortex—M0/M3后,也完全可兼容/混用原系统。LPC 11C14的CAN接口如图4所示。

4.1 LPC812M101FDH20的感知/控制网从机模块

LPC812M101FDH20是NXP Cortex—M0系列中的20引脚廉价芯片,它有16K闪存、4K SRAM和3个串口。如图5所示,LPC812M101FDH20通过开关矩阵分配引脚充当U0/U2/U3_TX D、U1/U2/U3_RXD、U1/U2/U3_RTS,连接MAX485即构成了RS-485通信接口。在软件中,通过CFG配置寄存器的第3、2位设置成10(9位通信模式),这就成了兼容于MCS-51的多机通信方式(即可进行软件地址检测和收发器方向控制的RS-485通信)。

由于LPC800系列微处理器串口的9位通信方式中的第9位仅能进行奇偶校验设置,不能人为设置1/0(地址/数据),所以它只能在RS-485感知/控制网中充当从机。

在充当从机使用中,先要将USART CTRL寄存器第2位(ADDRDET使能地址检测模式)设置为1,这时仅对主机发来的地址数据,产生一个接收数据中断。软件随后便检查接收地址数据,判断是否是本机地址。如果是,则软件会清零ADDRDET位,所有后续输入数据均会被正常接收处理。在一次轮询应答响应完后,再将USARTCTRL寄存器第2位(ADDRDET使能地址检测模式)设置为1,等待下次轮询本机。

LPC800的串口由于在设置波特率时,还可使用小数分频器,使其在各种晶振下均能获得精准波特率;同时,它采用3次采样接收,接收数据是3个样本“投票”中的2个,当有1个样本与其他不同时,会将USART状态寄存器第“15”位设置状态标志(接收噪声中断标志),从而大大降低了误码率。

4.2 LPC1768的感知/控制网主机模块

RS-485感知/控制网中的主机通常都是嵌入式通信服务器,所以选用Cortex—M3系列中的LPC1768作为感知/控制网中的主机。LPC1768虽有4个串口,但只有UART1具有RS-485模式。在这个模式中有3个专门用于RS-485通信的寄存器(控制寄存器、地址匹配寄存器、延时值寄存器)。

作为主机在轮询发送时,首先要将LPC1768的U1LCR线控制寄存器的1、0位设置成11(8位字符长度,相当于MCS-51的9位数据长度含TB8/RB8的通信);再视所发送的是轮询从机的地址还是数据,将U1LCR线控制寄存器第5、4位设成10(将第9奇偶校验位强制为1地址),或设成11(将第9奇偶校验位强制为0数据)。

作为主机在接收时,不再需要对自身地址匹配,所有的数据都必须接收。

通过U1RS485DLY延时值寄存器,可设置发送完最后一个停止位(移出TXFIFO)和DTR转为接收信号之间的延时(0~255个波特率时钟周期)。

5 ZigBee及WiFi接口

通过SPI接口,接入CC2530就构成了ZigBee接口。通过SPI接口,接入WiSmart EC32L12模块就构成了WiFi接口。

结语

采用NXP Cortex—M3/M0系列微处理器开发物联网智能家居系统,有以下几大优点:

①新系统的感知/控制网是32位系统,性能得到了极大地提高;

②Cortex—M3/M0系列ARM微处理器中都有一定的ROM API库,加块了开发速度,也减少了开发成本。

③集成度高,并有开关矩阵定义引脚,从而大大提高了硬件的适应性。

④智能家居24小时工作不断电,Cortex—M3/M0微处理器超低功耗设计,使新系统的待机功耗仅为旧系统的20%。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭