当前位置:首页 > 模拟 > 模拟
[导读]在介绍放大电路的性能指标时就曾指出,对于不同频率的正弦波信号,放大电路的放大倍数是不同的.本节要讨论的是影响放大电路频率响应的因素是什么;当电路确定后,不同频率的信号输入时,放大倍数的变化规律是什么;电路的频

在介绍放大电路的性能指标时就曾指出,对于不同频率的正弦波信号,放大电路的放大倍数是不同的.本节要讨论的是影响放大电路频率响应的因素是什么;当电路确定后,不同频率的信号输入时,放大倍数的变化规律是什么;电路的频率响应指标是什么;以及通频带的计算方法.

在此以前,我们都是在信号频率较低的条件下分析电路的,所用的h参数模型是低频等效模型.若用于高频信号,则由于管子内部极间电容的存在,不仅放大作用要受影响而且电压和电流之间产生附加相移.这样,它的参数将是频率的函数而且都是复数,用起来很不方便.下面我们准备介绍一种在高频信号输入时常用的模型---混合参数π型模型,简称混合π模型.

对于一个纯电阻网络,它的输出和输入的关系与信号频率无关.只有当网络中存在电抗元件时,才会使得输出输入关系成为频率的函数.在电子电路中常见的电抗元件是电容,以后我们会陆续见到它们,如晶体管或场效应管的极间等效电容,电路的耦合电容,旁路电容,线间的分布电容等.这些电容是影响电路频率响应的主要因素.所以有必要先将最简单的RC电路的频率特性弄清楚,那么电路中含多个RC回路的情况就好处理了.

2.6.1 RC电路的频率响应

一. 低通电路

我们先分析如图所示的电路的频率响应.

令 点Au=点Uo/点Ui

点Au=(1/jwC)/(R+(1/jwC))=1/(1+jwRC)

其中w是输入信号的角频率.

这个RC回路的时间常数套=RC,令

fH=wH/2π=(1/2π)*(1/套)=1/2πRC

则前式变为

点Au=1/(1+jw/wH)=1/(1+jf/fH)

既然点Au是一个复数,就可以分别用其幅值和相位来表示:

|点Au|=1/根号下(1+(f/fH)的平方)

Φ=tg-1(-f/fH)=-tg-1(f/fH)

现在对这个结果进行讨论.

当f<

Φ约=0°

当f=fH时, |点Au|=1/根号下(2)约=0.7

Φ=-45°

当f>>fH时, |点Au|趋于0

Φ约=-90°

这组结果表明,当信号频率低时,信号几乎全部通过并几乎无相移;信号频率越高,衰减的越厉害,相移越大,最终趋于-90°.这个电路称为低通电路.fH称为上限截止频率.在一般的电子技术领域中(不包括无线电的领域),信号频率的范围大致是从几赫到几十兆赫;放大倍数的范围大致是从几倍到几百万倍.用什么方式来表示这么宽的变化范围呢?下面我们介绍一种常用的作图法.

二.波特图

波特图由两部分组成,一部分是幅值与频率的关系,如式所表示的,称为幅频特性;一部分是相位与频率的关系,如式,称为相频特性.为了适应描述大范围的放大倍数和频率,除横坐标采用对数刻度外,纵轴上的幅值坐标|点Au|也用对数表示,为20lg|点Au|,单位是分贝(dB).这样一方面使纵坐标所表示的放大倍数幅值的范围扩大,同时还可以把函数中的乘除运算变为加减运算,便于简化分析.相位坐标仍采用角度.我们根据前式计算出|点Au|的分贝值及Φ与f/fH的关系,并在对数刻度坐标上画出对应的曲线,如图所示.它表明随着信号频率的变高,放大倍数的幅值下降,相移增大.考擦这两条曲线,发现有如下的特点.幅频特性大致可分为两段:f越小,20lg|点Au|越接近0dB,以横坐标为渐近线;f越大,则幅值趋于另一条直线.从前式可知,当f>>fH时,(f/fH)的平方>>1,则20lg|点Au|=20lg(1/根号下(1+(f/fH)的平方))约=20lgfH/f=20lgfH-20lgf上式表明是一条直线.前一项是一个常数,后一项是与f成比例的量.每当f增加十倍时,20lg|点Au|就减小20dB,也就是斜率为-20dB/十倍频的一条直线.这样,我们可以用这两条渐近线来近似原来的曲线,如图幅频特性中所示.今后就可用这条折线来近似幅频特性.对于只含有一个时间常数的电路,幅频特性曲线只有一个拐点,即fH,且fH=1/(2π套).从相频特性中可以看到,它大致可分为三段:当f<>fH时,Φ趋于-90°,我们将f>=10fH一段用Φ=-90°来近似;在0.1fH可用这三段折线近似.

由上述所说的坐标系及用折线近似曲线的画法来描述电路的频率特性,这组图称为近似的波特图.我们在以后的分析中常采用近似的波特图来描述频率特性,并将幅率特性和相频特性用同一个频率坐标画在一起以便分析.

三.高通电路

下面我们用同样的方法分析如图所示的高通电路.

写出点Au的表示式

点Au=R/(R+1/jwC)=jwRC/(1+jwRC)

回路时间常数套=RC.令

fL=wL/2π=1/2π套=1/2πRC

代入前式则

点Au=(jw/wL)/(1+jw/wL)=(jf/fL)/(1+jf/fL)

分别用幅值和相位表示

|点Au|=(f/fL)/根号下(1+(f/fL)的平方)

Φ=90°-tg-1(f/fL)

将幅频特性改用分贝为单位,则

20lg|点Au|=20lg((f/fL)/根号下(1+(f/fL)的平方))

对上式进行定性分析后可知:当f>>fL时,20lg|点Au|约=20lg1=0dB;当f=fL时,20lg|点Au|=20lg(1/根号下(2))=-3dB,

fL称为下限截止频率;当f<

20lg|点Au|约=20lgf-20lgfL

可以看出它与前面讨论过的低通电路类似,也可以用两条渐近线来近似原曲线.一条是0分贝线,另一条是由上式表示的直线,它的斜率是+20dB/十倍频,如图所示.如式表示的相频特性为:当f>>fL时,Φ趋于0°;当f=fL时,Φ=45°;当f<

三段直线来近似原曲线,如图所示.

由以上所述可知,只含有一个时间常数的低通滤波或高通滤波电路,只要给出放大倍数和上下限截止频率,就可以很方便地画出波特图,具体做法可见下例.

例2-9 低通电路如图所示,其中R=1k,C=100pf;高通电路如图所示,其中R=10k,C=1uf.试画出各自的点Au的波特图.

解: 先画出低通电路的波特图.其步骤如下:

(1)计算时间常数,套=R*C=10的-7次方s

fH=1/2π套 约= 1.6*10的6次方Hz

(2)在幅频特性的横坐标上定出f=fH约=1.6*10的6次方Hz的点,由此点作斜率为-20dB/十倍频的直线(f>fH)和

横轴重合的直线(f

(3)在相频特性的横坐标上定出0.1fH(即1.6*10的5次方Hz),fH(1.6*10的6次方Hz),10fH(1.6*10的7次方Hz)三个点,分别

对应于Φ=0°,-45°,-90°,连接此三点(0.1fH10fH)的三条直线即为相频特性.

对于高通电路同理可得套=R*C=10的-2次方s

fL=1/2π套 约= 16Hz

由此可定出波特图中有关的各点.

【更多资源】

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭