当前位置:首页 > 模拟 > 模拟
[导读]考虑耦合电容及极间电容时的等效电路→分别分析中频、低频、高频时的频率特性→整个频率范围内的频率特性。 其中, C ' = C b'e +( 1−K ) C b'c 。下面分别讨论中频、低频和高频时地频率特性。将耦合

考虑耦合电容及极间电容时的等效电路→分别分析中频、低频、高频时的频率特性→整个频率范围内的频率特性。

其中, C ' = C b'e +( 1−K ) C b'c 。

下面分别讨论中频、低频和高频时地频率特性。将耦合电容 C 2 和负载电阻 R L 看作是下一级输入端耦合电容和输入电阻,暂不考虑。

3.3.1 中频段

中频区耦合电容容抗较小,可视为短路,极间电容容抗很大,可视为开路,其混合 π 型等效电路如图3.10所示。

U o =− g m U b'e R c

U b'e = r b'e r bb' + r b'e U i =p U i

U i = r i R s + r i U s

其中, r i = R b //( r bb' + r b'e ) , p= r b'e r bb' + r b'e = r b'e r be

∴ U o =− g m p U i R c =− r i R s + r i p g m R c U s

A usm = U o U i =− r i R s + r i p g m R c

将 g m = β r b'e 代入式中 A usm = U o U i =− r i R s + r i p g m R c =− r i R s + r i   ⋅  r b'e r be g m R c 得

A usm = U o U i =− r i R s + r i p g m R c =− r i R s + r i  ⋅   β R c r be

与用微变等效电路分析的结果一致。

3.3.2 低频段

低频区耦合电容容抗较大,其分压作用较大,不可忽略,极间电容容抗很大,可视为开路,其混合 π 型等效电路如图3.11所示。

1.确定放大倍数

U ˙ o =− g m U ˙ b'e R c

U ˙ b'e = r b'e r bb' + r b'e U ˙ i =p U ˙ i

U ˙ i = r i R s + r i + 1 jω   C 1 U ˙ s

∴ U ˙ o =− r i R s + r i + 1 jω   C 1 p g m R c U ˙ s

变换后得 U ˙ o =− r i R s + r i p g m R c 1 1+ 1 jω  ( R s + r i )   C 1 U ˙ s

∴ A ˙ usL = U ˙ o U ˙ s =− r i R s + r i p g m R c 1 1+ 1 jω  ( R s + r i )   C 1

令 τ L =( R s + r i ) C 1

f L = 1 2π τ L = 1 2π( R s + r i ) C 1

则 A ˙ usL = A usm 1 1+ 1 jω τ L = A usm 1 1−j f L f

幅频特性 | A ˙ usL |= | A usm | 1+ ( f L f ) 2

相频特性 ϕ=− 180 ∘ +arctan⁡ f L f

当 f= f L 时, | A ˙ usL |= 1 2 A usm , f L 为下限频率。显然,下限频率 f L 主要取决于耦合电容 C 1 所在回路的时间常数 τ L =( R s + r i ) C 1 。

2.确定频率特性

(1)画对数幅频特性(波特图)

将幅频特性取对数,得

L A =20lg⁡| A ˙ usL |=20lg⁡| A usm |−20lg⁡ 1+ ( f L f ) 2

当 f<< f L 时, L A =20lg⁡| A usm |−20lg⁡ f L f ,频率下降十倍 L A 下降20dB;

当 f>> f L 时, L A ≈20lg⁡| A usm | , L A 不随频率变化;

当 f= f L 时, L A ≈20lg⁡| A usm |−3dB , L A 比中频区低3dB。

(2)画相频特性

当 f<<0.1 f L 时, ϕ≈− 90 ∘ ;

当 f<<10 f L 时, ϕ≈− 180 ∘ ;

当 f= f L 时, ϕ=− 135 ∘ 。

当 0.1 f L

据此可画出对数幅频特性频率和相频特性,如图3.12所示。

3.3.3 高频段

高频区耦合电容容抗较小,可视为短路,极间电容容抗很小,不可忽略,其混合 π 型等效电路如图3.13所示。

由于 K-1 K C b'c 所在输出回路的时间常数比输入回路 C ′ 的时间常数小得多,故可将 K-1 K C b'c 忽略不计。再利用戴维南定理将输入回路简化,则可得高频简化等效电路,如图3.14所示。

其中 U s ' = r i R s + r i ⋅ r b'e r be U ˙ s

R ' = r b'e //[ r bb' +( R s // R b ) ]

C ′ = C b'e +( 1−K ) C b'c = C b'e +( 1+ g m R c ) C b'c

1.确定放大倍数

U ˙ b'e = 1 jω C ' R ′ + 1 jω C ' U ˙ S ' = 1 1+jω R'C' U ˙ S '

而 U ˙ o =− g m U ˙ b'e R c =− r i R s + r i ⋅ r b'e r be g m R c 1 1+jω  R ' C ' U ˙ s

∴ A ˙ usH = U ˙ o U ˙ s = A usm 1 1+jω  R ′ C ′

令 τ H = R ′ C ′ , f H = 1 2π τ H = 1 2π R ′ C ′

则 A ˙ usH = A usm 1 1+j f f H

幅频特性 | A ˙ usH |= | A usm | 1+ ( f f H ) 2

相频特性 ϕ=− 180 ∘ −arctan⁡ f f H

当 f= f H 时, | A ˙ usH |= 1 2 A usm , f H 为上限频率。显然,上限频率 f H 主要取决于电容 C ′ 所在回路的时间常数 τ H = R ′ C ′ 。

2.确定频率特性

(1)画对数幅频特性

将幅频特性取对数,得

L A =20lg⁡| A ˙ usH |=20lg⁡| A usm |−20lg⁡ 1+ ( f f H ) 2

当 f<< f H 时, L A ≈20lg⁡| A usm | , L A 不随频率变化;

当 f>> f H 时, L A ≈20lg⁡| A usm |−20lg⁡( f f H ) ,频率增大十倍 L A 下降20dB;

当 f= f L 时, L A ≈20lg⁡| A usm |−3dB , L A 比中频区低3dB。

(2)画相频特性

当 f<<0.1 f H 时, ϕ≈− 180 ∘ ;

当 f>>10 f H 时, ϕ≈− 270 ∘ ;

当 f= f L 时, ϕ=− 225 ∘ 。

当 0.1 f H

据此可画出对数幅频特性频率和相频特性,如图3.15所示。

3.3.4 完整的频率特性

将中频、低频和高频的放大倍数综合起来,可得共射放大电路在全频率范围内放大倍数的表达式为:

A ˙ = us A usm ( 1−j f L f )( 1+j f f H )

同时,将三段频率特性综合起来,即得全频段频率特性。如图3.16所示。

返回页首

3.4 多级放大电路的频率响应

授课思路:

多级放大电路总放大倍数→总放大倍数幅频特性和总相移→多级频率特性的画法→几个结论。

3.4.1 多级放大电路的幅频特性和相率特性

多级放大电路的总电压放大倍数为

A ˙ u = A ˙ u1 ⋅ A ˙ u2 ⋅       ⋯      ⋅ A ˙ un

对数幅频特性 20lg⁡| A ˙ u |=20lg⁡| A ˙ u1 |+20lg⁡| A ˙ u2 |+⋯+20lg⁡| A ˙ un |

总相移 ϕ= ϕ 1 + ϕ 2 +⋯+ ϕ n

例如,把两个幅频特性和相频特性完全相同的单级放大电路串联组成一个两级放大电路,则绘制总幅频特性和相频特性时,只需分别将原来单级放大电路的幅频特性和相频特性上每一点纵坐标增大一倍即可,如图3.17所示。

由图可知

f L > f L1 , f H < f H1 , BW< BW 1

3.4.1 多级放大电路的幅频特性和相率特性

可以证明 1 f H ≈1.1 1 f H1 2 + 1 f H2 2 +⋯+ 1 f Hn 2

f L =1.1 f L1 2 + f L2 2 +⋯+ f Ln 2

实际中可以估算,当各级放大电路的时间常数悬殊很大时,可以取起主要作用的那一级作为估算依据。

【更多资源】

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭