当前位置:首页 > 模拟 > 模拟
[导读]集电极开路(OC)输出:集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为"0"时,输出也为"0")。对于图1,当左端的输入为“0”时,前

集电极开路(OC)输出:

集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为"0"时,输出也为"0")。对于图1,当左端的输入为“0”时,前面的三极管截止(即集电极C跟发射极E之间相当于断开),所以5V电源通过1K电阻加到右边的三极管上,右边的三极管导通(即相当于一个开关闭合);当左端的输入为“1”时,前面的三极管导通,而后面的三极管截止(相当于开关断开)。

我们将图1简化成图2的样子。图2中的开关受软件控制,“1”时断开,“0”时闭合。很明显可以看出,当开关闭合时,输出直接接地,所以输出电平为0。而当开关断开时,则输出端悬空了,即高阻态。这时电平状态未知,如果后面一个电阻负载(即使很轻的负载)到地,那么输出端的电平就被这个负载拉到低电平了,所以这个电路是不能输出高电平的。

再看图三。图三中那个1K的电阻即是上拉电阻。如果开关闭合,则有电流从1K电阻及开关上流过,但由于开关闭和时电阻为0(方便我们的讨论,实际情况中开关电阻不为0,另外对于三极管还存在饱和压降),所以在开关上的电压为0,即输出电平为0。如果开关断开,则由于开关电阻为无穷大(同上,不考虑实际中的漏电流),所以流过的电流为0,因此在1K电阻上的压降也为0,所以输出端的电压就是5V了,这样就能输出高电平了。但是这个输出的内阻是比较大的(即1KΩ),如果接一个电阻为R的负载,通过分压计算,就可以算得最后的输出电压为5*R/(R+1000)伏,即5/(1+1000/R)伏。所以,如果要达到一定的电压的话,R就不能太小。如果R真的太小,而导致输出电压不够的话,那我们只有通过减小那个1K的上拉电阻来增加驱动能力。但是,上拉电阻又不能取得太小,因为当开关闭合时,将产生电流,由于开关能流过的电流是有限的,因此限制了上拉电阻的取值,另外还需要考虑到,当输出低电平时,负载可能还

会给提供一部分电流从开关流过,因此要综合这些电流考虑来选择合适的上拉电阻。

漏极开路(OD)输出:

漏极开路(OD)输出,跟集电极开路输出是十分类似的。将上面的三极管换成场效应管即可。这样集电极就变成了漏极,OC就变成了OD,原理分析是一样的。对于漏极开路(OD)来说,必须在漏极输出端接上拉电阻,否则只能输出低电平。

推挽(Push-Pull)输出:

一般指两三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个三极管截止,就刚好形成了推挽相连。这样的电路也称为推拉式或Totem-pole电路。推挽电路适用于低电压大电流的场合,广泛应用于开关电源和功放电路中。简化电路图如下所示:

简单理解:推挽输出的结构就是把上面的上拉电阻也换成一个开关,当要输出高电平时,上面的开关通,下面的开关断;而要输出低电平时,则刚好相反。比起OC或者OD来说,这样的推挽结构高、低电平驱动能力都很强。如果两个输出不同电平的输出口接在一起的话,就会产生很大的电流,有可能将输出口烧坏。而上面说的OC或OD输出则不会有这样的情况,因为上拉电阻提供的电流比较小。如果是推挽输出的要设置为高阻态时,则两个开关必须同时断开(或者在输出口上使用一个传输门),这样可作为输入状态。

推挽输出举例:传统8051单片机的I/O接口只可以作为标准双向输入/输出接口,如果用其来驱动LED则只能用灌电流的方式或是用三极管外扩驱动电路。灌电流方式是将LED正极接在VCC上,负极接在I/O接口上,当I/O接口为高电平时LED两极的电平相同,没有电流,LED为熄灭状态。当I/O接口为低电平时,电流从VCC流入I/O接口,LED点亮。当把LED正极接在I/O接口,负极接在GND,将I/O接口置于高电平时,LED会点亮,但因为I/O接口上拉能力不足而使亮度不理想。推挽工作方式就是具有强上拉能力的工作方式,它可以实现高电平驱动LED。惊喜出现了,把LED正负极分别接在两个I/O接口上,然后设置正极的I/O接口为推挽输出,负极的I/O接口为标准双向灌电流输入,结果会怎么样呢?非常好,我们可以直接用I/O接口驱动LED而不需要VCC和GND。LED点阵屏就是多个LED的阵列连接,只要把LED点阵屏的所有引脚接在I/O接口上,然后根据LED点阵屏的引脚定义,将对应正极的I/O接口设置成推挽,将对应负极的I/O接口设置成标准双向输入,余下的就是把将要点亮的LED点阵屏上的点所对应的行列线分别给予高低电平,那么一切就尽在掌握之中。

扩展阅读:迷惑我们很久的并联谐振

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在AI、HPC的催化下,先进封装拥有更小I/O间距和更高密度的RDL线间距。全球大厂无不更新迭代更先进的制造设备以实现更密集的I/O接口和更精密的电气连接,设计更高集成、更高性能和更低功耗的产品,从而锁定更多的市场份额。

关键字: I/O接口 电气连接

在电子工程中,开漏输出(Open-Drain Output)是一种常见的电路输出类型,广泛应用于各种电子设备与系统中。了解开漏输出的工作原理、特性及其应用,对于电子工程师和爱好者来说,是掌握电子电路设计、调试与维护的关键...

关键字: 电路输出 电子电路设计 开漏输出

复位电路是一种用来使电路恢复到起始状态的电路设备,它的操作原理与计算器有着异曲同工之妙,只是启动原理和手段有所不同。复位电路,就是利用它把电路恢复到起始状态。就像计算器的清零按钮的作用一样,以便回到原始状态,重新进行计算...

关键字: 复位电路 计算器 电平

下图显示了集电极开路开关电路的典型布置,该电路可用于驱动机电型设备以及许多其他开关应用。NPN晶体管基极驱动电路可以是任何合适的模拟或数字电路。晶体管的集电极连接到要切换的负载,晶体管的发射极端子直接接地。

关键字: 集电极开路 开关电路

集电极开路输出在数字芯片设计、运算放大器和微控制器 (Arduino) 类型应用中越来越普遍,用于与其他电路连接或驱动可能与电气特性不兼容的指示灯和继电器等大电流负载控制电路。但是“集电极开路”是什么意思,我们如何在电路...

关键字: 集电极开路 负载控制

在进行CAN总线通信前,应保证正确的总线配置,比如终端电阻。它是影响总线通信的重要组件,下面我们不考虑信号的完整性,只从信号幅度和时间常数方面分析不加终端电阻时的影响。  终端电阻添加要求根据ISO11898-2对终端电...

关键字: 电阻 终端 CAN总线 电平

1、AHB系统总线分为APB1(36MHz)和APB2(72MHz),其中2>1,意思是APB2接高速设备。2、Stm32f10x.h相当于reg52.h(里面有基本的位操作定义),另一个为stm32f10x_conf....

关键字: STM32 电平 FSMC GB

开漏输出:输出端相当于三极管的集电极.要得到高电平状态需要上拉电阻才行.适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。推挽结构一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个...

关键字: 开漏输出

本文来源于面包板社区电路设计其实也可以很有趣。先说一说这个电路的用途:当两个MCU在不同的工作电压下工作(如MCU1工作电压5V;MCU2工作电压3.3V),那么MCU1与MCU2之间怎样进行串口通信呢?很明显是不能将对...

关键字: 电平 通信 信号

一.TTL  TTL集成电路的主要型式为晶体管-晶体管逻辑门(transistor-transistor logic gate),TTL大部分都采用5V电源。  1.输出高电平Uoh和输出低电平Uol  Uoh≥2.4V...

关键字: CMOS TTL 电平
关闭
关闭