当前位置:首页 > 单片机 > 单片机
[导读]有时候需要精确的延时,比如18B20温度传感器对时序要求非常严格,必须精确到微秒级别一、用NOP函数在keil C51中,直接调用库函数:#include // 声明了void _nop_(void);_nop_(); // 产生一条NOP指令作用:对于延时很

有时候需要精确的延时,比如18B20温度传感器对时序要求非常严格,必须精确到微秒级别

一、用NOP函数

在keil C51中,直接调用库函数:

#include // 声明了void _nop_(void);

_nop_(); // 产生一条NOP指令

作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒。NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。(若为11.0592MHz,延时为12*(1/11.0592)=1.085uS)。对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。

二、用for和while实现

在选择C51中循环语句时,要注意以下几个问题

第一、定义的C51中循环变量,尽量采用无符号字符型变量。

第二、在FOR循环语句中,尽量采用变量减减来做循环。

第三、在do…while,while语句中,循环体内变量也采用减减方法。

这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。

下面举例说明:

unsigned char i;

for(i=0;i<255;i++);

unsigned char i;

for(i=255;i>0;i--);

其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令:

MOV 09H,#0FFH

LOOP: DJNZ 09H,LOOP

指令相当简洁,也很好计算精确的延时时间。

同样对do…while,while循环语句中,也是如此

例:

unsigned char n;

n=255;

do{n--}

while(n);

n=255;

while(n)

{n--};

这两个循环语句经过C51编译之后,形成DJNZ来完成的方法,

故其精确时间的计算也很方便。

其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。

unsigned char i,j

for(i=255;i>0;i--)

for(j=255;j>0;j--);

unsigned char i,j

i=255;

do{j=255;

do{j--}

while(j);

i--;

}

while(i);

unsigned char i,j

i=255;

while(i)

{j=255;

while(j)

{j--};

i--;

}

这三种方法都是用DJNZ指令嵌套实现循环的,由C51编译器用下面的指令组合来完成的

MOV R7,#0FFH

LOOP2: MOV R6,#0FFH

LOOP1: DJNZ R6,LOOP1

DJNZ R7,LOOP2

这些指令的组合在汇编语言中采用DJNZ指令来做延时用,因此它的时间精确计算也是很简单,假上面变量i的初值为m,变量j的初值为n,则总延时时间为:m×(n×T+T),其中T为DJNZ指令执行时间(DJNZ指令为双周期指令)。这里的+T为MOV这条指令所使用的时间。同样对于更长时间的延时,可以采用多重循环来完成。

只要在程序设计循环语句时注意以上几个问题。

下面给出有关在C51中延时子程序设计时要注意的问题

1、在C51中进行精确的延时子程序设计时,尽量不要或少在延时子程序中定义局部变量,所有的延时子程序中变量通过有参函数传递。

2、在延时子程序设计时,采用do…while,结构做循环体要比for结构做循环体好。

3、在延时子程序设计时,要进行循环体嵌套时,采用先内循环,再减减比先减减,再内循环要好。

unsigned char delay(unsigned char i,unsigned char j,unsigned char k)

{unsigned char b,c;

b="j";

c="k";

do{

do{

do{k--};

while(k);

k="c";

j--;};

while(j);

j=b;

i--;};

while(i);

}

这精确延时子程序就被C51编译为有下面的指令组合完成

delay延时子程序如下:

MOV R6,05H

MOV R4,03H

C0012: DJNZ R3, C0012

MOV R3,04H

DJNZ R5, C0012

MOV R5,06H

DJNZ R7, C0012

RET

假设参数变量i的初值为m,参数变量j的初值为n,参数变量k的初值为l,则总延时时间为:l×(n×(m×T+2T)+2T)+3T,其中T为DJNZ和MOV指令执行的时间。当m=n=l时,精确延时为9T,最短;当m=n=l=256时,精确延时到16908803T,最长。

以上参考http://wenku.baidu.com/view/e79d80c40c22590102029da1.html

三、下面介绍一下如何用keil仿真延时时间

测试函数:

void TempDelay (unsigned char idata us)

{

while(us--);

}

测试用例:

TempDelay(80); //530uS

TempDelay(14); //100uS

NOP; //1.085uS

操作:

1、打开调试

2、起始时间为0.00059136s

3、执行了TempDelay(80)后时间为0.00112413s,用时0.00053277s=532.77uS

4、到这里起始时间为0.00112630s

5、执行了TempDelay(14)后,变为0.00122938s,用时0.00010308s=103.08uS

6、这是执行了一次NOP指令(晶振为11.0592MHz,单片机为STC89C52),时间为0.00123047s,用时0.00000109s=1.09uS

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭